Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (4): 367-377.DOI: 10.15541/jim20220700
Special Issue: 【信息功能】柔性材料(202506); 【信息功能】忆阻器材料与器件(202506)
• Topical Section on Neuromorphic Materials and Devices (Contributing Editor: WAN Qing) • Previous Articles Next Articles
YANG Yang(), CUI Hangyuan, ZHU Ying, WAN Changjin(
), WAN Qing(
)
Received:
2022-11-24
Revised:
2022-12-13
Published:
2023-04-20
Online:
2022-12-28
Contact:
WAN Changjin, associate professor. E-mail: cjwan@nju.edu.cn;About author:
YANG Yang (1994-), female, PhD candidate. E-mail: 1294596086@qq.com
Supported by:
CLC Number:
YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors[J]. Journal of Inorganic Materials, 2023, 38(4): 367-377.
Fig. 2 Research on synaptic transistor on PI substrate (a) Image of In2O3 nanofiber synaptic transistor on PI substrate[29]; (b) Optical response of EPSC triggered by different light intensities[30]; (c) Relationship between amplitude of EPSC response to presynaptic peak (2.0 V, 25 ms) and gate pressure[31]; (d) Accuracy of simulated neural network for pattern recognition of MNIST small digit (8×8 pixels) database[29]; Colorful figures are available on website
Fig. 3 Research on synaptic transistor on PEN substrate[36] (a) Schematic diagram of a synaptic transistor constructed on a PEN substrate; (b) Variation trend of the postsynaptic current with the number of bending, and curvature radius at 0.8 cm during the test; (c) Schematic diagram of a pain perception model caused by UV stimulation; (d) Pain facilitation index increased with the increase of UV intensity; (e) Change of pain de-facilitation index with ΔT
Fig. 4 Research on synaptic transistor on PET substrate (a) Physical photograph of the construction of synaptic transistors on a PET substrate; (b) Change of current with time after 20 (4.0 V, 20 ms) pulses being applied to the gate of the synaptic transistor when VDS at 0.5 V [39]; (c) Schematic diagram of spatio-temporal signal integration and memory performed by heterogeneous synapses (with the introduction of noise signals during the transmission of the original signal); (d) Comparison of classification accuracy of two-gate heterogeneous synaptic transistor and single-gate homogeneous synaptic transistor networks[41]
Fig. 5 Research on synaptic transistor on mica substrate (a) Synaptic plasticity of synaptic transistors constructed on mica substrate[45]; (b) Optical photographs of flexible VO2 transistors constructed on mica substrate; (c) EPSC count chart to assess pain intensity; (d) Simulation identification accuracy of ideal devices and VO2 transistor devices[49]; EPSC: Excitatory post-synaptic current
Fig. 6 Research on synaptic transistor on paper substrate[52] (a) Schematic diagram of the chitosan /IZO synaptic transistor constructed on paper substrate; (b) Optical photographs of bent synaptic transistors on a paper substrate; (c, d) Simulated biological synaptic function on paper synaptic transistors
Fig. 7 Research on synaptic transistor on other self-support substrate (a) Organic synaptic transistor based on PDMS substrate and its excellent mechanical stability[54]; (b) Pain thresholds of independent artificial nociceptors at different modulation voltages; (c) Pain response currents of independent artificial nociceptors at different modulation voltages[56]
Fig. 8 Research on flexible neuron transistor (a) Schematic diagram of IZO-based neuron transistor measurement; (b) pH sensitivity of the device with different VG1[61]; (c) Change of the estimated recognition rate of pattern recognition with the number of training under three conditions according to different exposure time; (d) Classification test confusion matrix under three different conditions ("Good", "Yeah" and "OK") after different exposure time and number of iterations[62]
[1] |
PARK H L, LEE Y, KIM N, et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Advanced Materials, 2020, 32(15):1903558.
DOI URL |
[2] |
WAN C J, ZHU L Q, ZHOU J M, et al. Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. Nanoscale, 2013, 5(21):10194.
DOI PMID |
[3] |
PARK Y, LEE J S. Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 2017, 11(9):8962.
DOI URL |
[4] |
WANG H, YANG M, TANG Q, et al. Flexible, conformal organic synaptic transistors on elastomer for biomedical applications. Advanced Functional Materials, 2019, 29(19):1901107.
DOI URL |
[5] |
ZHU Y, PENG B, ZHU L, et al. IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity. Applied Physics Letters, 2022, 121(13):133502.
DOI URL |
[6] |
KE S, FU C, LIN X, et al. BCM Learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors. IEEE Transactions on Electron Devices, 2022, 69(8):4646.
DOI URL |
[7] | 蒋子寒, 柯硕, 祝影, 等. 柔性神经形态晶体管及其仿生感知应用. 物理学报, 2022, 71(14):147301. |
[8] |
KE S, HE Y, ZHU L, et al. Indium-gallium-zinc-oxide based photoelectric neuromorphic transistors for modulable photoexcited corneal nociceptor emulation. Advanced Electronic Materials, 2021, 7(11):2100487.
DOI URL |
[9] |
XIAO Z, HUANG J. Energy-efficient hybrid perovskite memristors and synaptic devices. Advanced Electronic Materials, 2016, 2(7):1600100.
DOI URL |
[10] |
WANG Z, JOSHI S, SAVEL’EV S, et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nature Electronics, 2018, 1(2):137.
DOI |
[11] |
TIAN H, GUO Q, XIE Y, et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Advanced Materials, 2016, 28(25):4991.
DOI URL |
[12] |
LEE T H, LOKE D, HUANG K J, et al. Tailoring transient-amorphous states: towards fast and power-efficient phase-change memory and neuromorphic computing. Advanced Materials, 2014, 26(44):7493.
DOI URL |
[13] |
TUMA T, PANTAZI A, LE GALLO M, et al. Stochastic phase-change neurons. Nature Nanotechnology, 2016, 11(8):693.
DOI PMID |
[14] |
YANG Y, CHEN B, LU W D. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Advanced Materials, 2015, 27(47):7720.
DOI URL |
[15] |
LIU Y H, ZHU L Q, FENG P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Advanced Materials, 2015, 27(37):5599.
DOI URL |
[16] |
LV Z, ZHOU Y, HAN S T, et al. From biomaterial-based data storage to bio-inspired artificial synapse. Materials Today, 2018, 21(5):537.
DOI URL |
[17] |
HAMMOCK M L, CHORTOS A, TEE B C K, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Advanced Materials, 2013, 25(42):5997.
DOI URL |
[18] |
CHORTOS A, LIU J, BAO Z. Pursuing prosthetic electronic skin. Nature Materials, 2016, 15(9):937.
DOI PMID |
[19] |
JIANG J, WAN Q, SUN J, et al. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Applied Physics Letters, 2009, 95(15):152114.
DOI URL |
[20] |
LAI Q, ZHANG L, LI Z, et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Advanced Materials, 2010, 22(22):2448.
DOI URL |
[21] |
HE Y, WANG X, GAO Y, et al. Oxide-based thin film transistors for flexible electronics. Journal of Semiconductors, 2018, 39(1):011005.
DOI URL |
[22] |
LIANG X, LI Z, LIU L, et al. Artificial synaptic transistor with solution processed InOx channel and AlOx solid electrolyte gate. Applied Physics Letters, 2020, 116(1):012102.
DOI URL |
[23] | CHEN Y, QIU W, WANG X, et al. Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection. Nano Energy, 2019, 62: 393. |
[24] |
ZHANG S R, ZHOU L, MAO J Y, et al. Artificial synapse emulated by charge trapping-based resistive switching device. Advanced Materials Technologies, 2019, 4(2):1800342.
DOI URL |
[25] |
KIM M K, LEE J S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano, 2018, 12(2):1680.
DOI URL |
[26] |
PEREIRA M, DEUERMEIER J, NOGUEIRA R, et al. Noble-metal-free memristive devices based on IGZO for neuromorphic applications. Advanced Electronic Materials, 2020, 6(10):2000242.
DOI URL |
[27] |
FORTUNE E S, ROSE G J. Roles for short-term synaptic plasticity in behavior. Journal of Physiology-Paris, 2002, 96(5/6):539.
PMID |
[28] | YANG Y, WEN J, GUO L, et al. Long-term synaptic plasticity emulated in modified graphene oxide electrolyte gated IZO-based thin-film transistors. ACS Applied Materials & Interfaces, 2016, 8(44):30281. |
[29] |
LI H, DING Y, QIU H, et al. Flexible and compatible synaptic transistor based on electrospun In2O3 nanofibers. IEEE Transactions on Electron Devices, 2022, 69(9):5363.
DOI URL |
[30] |
SUN F, LU Q, LIU L, et al. Bioinspired flexible, dual-modulation synaptic transistors toward artificial visual memory systems. Advanced Materials Technologies, 2020, 5(1):1900888.
DOI URL |
[31] |
HE Y, ZHU Y, CHEN C, et al. Flexible oxide-based Schottky neuromorphic TFTs with configurable spiking dynamic functions. IEEE Transactions on Electron Devices, 2020, 67(11):5216.
DOI URL |
[32] |
OH S, CHO J I, LEE B H, et al. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Science Advances, 2021, 7(44):eabg9450.
DOI URL |
[33] | 梁艳书. 新型的塑料包装材料 PEN. 包装工程, 2004, 25(3):167. |
[34] | 刘乃青, 顾巍, 乔迁, 等. 聚萘二甲酸乙二醇酯 (PEN) 的优异特性. 长春工业大学学报(自然科学版), 2004, 25(2):7. |
[35] |
邹竞. 国外印刷电子产业发展概述. 影像科学与光化学, 2014, 32(4):342.
DOI |
[36] | WEI H, NI Y, SUN L, et al. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy, 2021, 81: 105648. |
[37] | SHI J, JIE J, DENG W, et al. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Advanced Materials, 2022, 34: 2200380. |
[38] | 郝莱丹.PA6/PET 基聚酰胺酯及纤维的制备与结构性能研究. 上海: 东华大学硕士学位论文, 2018. |
[39] |
ZHOU J, WAN C, ZHU L, et al. Synaptic behaviors mimicked in flexible oxide-based transistors on plastic substrates. IEEE Electron Device Letters, 2013, 34(11):1433.
DOI URL |
[40] |
ZHOU J, LIU N, ZHU L, et al. Energy-efficient artificial synapses based on flexible IGZO electric-double-layer transistors. IEEE Electron Device Letters, 2014, 36(2):198.
DOI URL |
[41] | LIU X, SUN C, GUO Z, et al. A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing. Nanoscale Advances, 2022, 4: 2412. |
[42] |
MA Z, SKUMRYEV V, GICH M. Magnetic properties of synthetic fluorophlogopite mica crystals. Materials Advances, 2020, 1(5):1464.
DOI URL |
[43] |
HE Y, DONG H, MENG Q, et al. Mica, a potential two-dimensional-crystal gate insulator for organic field-effect transistors. Advanced Materials, 2011, 23(46):5502.
DOI URL |
[44] | HEPBURN D M, KEMP I J, SHIELDS A J. Mica. IEEE Electrical Insulation Magazine, 2000, 16(5):19. |
[45] |
ZHONG G, ZI M, REN C, et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Applied Physics Letters, 2020, 117(9):092903.
DOI URL |
[46] | JOH H, JUNG M, HWANG J, et al. Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing. ACS Applied Materials & Interfaces, 2021, 14(1):1326. |
[47] |
REN C, ZHONG G, XIAO Q, et al. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption. Advanced Functional Materials, 2020, 30(1):1906131.
DOI URL |
[48] |
ZOU X, ZOU J, LIU L, et al. Top-gated MoS₂negative-capacitance transistors fabricated by an integral-transfer of pulsed laser deposited HfZrO2 on mica. IEEE Transactions on Electron Devices, 2022, 69(6):3477.
DOI URL |
[49] |
DENG X, WANG S Q, LIU Y X, et al. A flexible mott synaptic transistor for nociceptor simulation and neuromorphic computing. Advanced Functional Materials, 2021, 31(23):2101099.
DOI URL |
[50] | JOH H, JUNG M, HWANG J, et al. Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing. ACS Applied Materials & Interfaces, 2021, 14(1):1326. |
[51] |
ZHENG Q, LI H, ZHENG Y, et al. Cellulose-based flexible organic light-emitting diodes with enhanced stability and external quantum efficiency. Journal of Materials Chemistry C, 2021, 9(13):4496.
DOI URL |
[52] |
WU G, ZHANG J, WAN X, et al. Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates. Journal of Materials Chemistry C, 2014, 2(31):6249.
DOI URL |
[53] |
WU G, WAN C, ZHOU J, et al. Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates. Nanotechnology, 2014, 25(9):094001.
DOI URL |
[54] | WANG X, YAN Y, LI E, et al. Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy, 2020, 75: 104952. |
[55] |
FENG G, JIANG J, LI Y, et al. Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Advanced Functional Materials, 2021, 31(36):2104327.
DOI URL |
[56] |
JIANG S, HE Y, LIU R, et al. Freestanding dual-gate oxide-based neuromorphic transistors for flexible artificial nociceptors. IEEE Transactions on Electron Devices, 2020, 68(1):415.
DOI URL |
[57] |
CHEN C, HE Y, ZHU L, et al. Flexible dual-gate MoS2 neuromorphic transistors on freestanding proton-conducting chitosan membranes. IEEE Transactions on Electron Devices, 2021, 68(6):3119.
DOI URL |
[58] |
ERCAN E, LIN Y C, SAKAI-OTSUKA Y, et al. Harnessing biobased materials in photosynaptic transistors with multibit data storage and panchromatic photoresponses extended to near-infrared band. Advanced Optical Materials, 2022, 10(21):2201240.
DOI URL |
[59] | BEAR M, CONNORS B, PARADISO M A. Neuroscience: exploring the brain, enhanced edition: exploring the brain. Burlington: Jones & Bartlett Learning, 2020. |
[60] |
SHIBATA T, OHMI T. A functional MOS transistor featuring gate-level weighted sum and threshold operations. IEEE Transactions on Electron Devices, 1992, 39(6):1444.
DOI URL |
[61] | LIU N, ZHU L Q, Feng P, et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Scientific Reports, 2015, 5: 18082. |
[62] |
LIU L, XU W, NI Y, et al. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano, 2022, 16(2):2282.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||