Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (2): 137-147.DOI: 10.15541/jim20220343
Special Issue: 【信息功能】电介质储能材料(202506); 【信息功能】介电、铁电、压电材料(202506)
• REVIEW • Previous Articles Next Articles
XIE Bing1(), CAI Jinxia1, WANG Tongtong1, LIU Zhiyong1, JIANG Shenglin2, ZHANG Haibo3
Received:
2022-06-19
Revised:
2022-09-21
Published:
2023-02-20
Online:
2022-10-28
About author:
XIE Bing (1983-), male, PhD, associate professor. E-mail: xieb@nchu.edu.cn
Supported by:
CLC Number:
XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density[J]. Journal of Inorganic Materials, 2023, 38(2): 137-147.
Fig. 1 PVDF-based composites and sandwich-structured BT/PVDF composites[28] (a) Electric field distribution simulation diagram; (b) Breakdown field strength; (c) COMSOL multi-physics field simulation; (d, e) Energy density
Fig. 2 BT@HPC/PVDF composite[27] (a, b1) Schematic diagram of preparation and space charge polarization distribution of BT@HPC/PVDF composites; (b2) Microcapacitor networks constructed by BT@HPC; (b3) Generated space charge region (SCR) surrounding BT@HPC in the PVDF matrix; (b4) Space charge regions in single-layer structural composites; (b5) Three-layer structural composites; (c) Weibull breakdown distribution; (d) Discharged energy density Colorful figures are available on website
Fig. 3 Schematic preparation of all-organic PMMA/P(VDF-HFP) films, cross-sectional SEM image, discharged energy density, and charge-discharge efficiency[35] (a) Schematic illustration of PMMA/P(VDF-HFP) films; (b) SEM cross-sectional image; (c) Discharged energy density; (d) Charge-discharge efficiency
Fig. 4 Three-layer composite film with PVDF/BNNS as the outer layer and PVDF/BST as the middle layer[26] (a) Structure schematic; (b) Weibull plots for the trilayer-structured nanocomposites indicating the failure distribution; (c) The development of electrical trees in the trilayer-structured nanocomposites with different BST NW contents at 550 MV·m−1; (d) Weibull breakdown strength and maximum electrical displacement; (e) Discharged energy density
Fig. 5 Dielectric energy storage properties of multilayer composites with asymmetric LTN structure[45] (a) Dielectric energy storage properties of multilayer composites with asymmetric LTN structure; (b) Weibull breakdown distribution; (c) Derived breakdown strength; (d) Discharged energy density; (e) Charge-discharge efficiency (b, d, e) E/F in volume fraction
Fig. 6 Gradient-structured BaTiO3/PVDF nanocomposites (GLN)[46] (a) Electric field distribution and growth of breakdown channels; (b) Average electric field in each layer of GLNs; (c) Electric field gap at different interfaces and average electric field in the GLN sample; (d, e) Discharged energy density and charge-discharge efficiency
Fig. 7 P(VDF-HFP)/BT nanocomposites and P(VDF-HFP)-P(VDF-HFP)/BT multilayer nanocomposites[48] (a) Schematic illustration of the preparation; (b) SEM image of P(VDF-HFP)-10% BTO; (c, d) Polarization interface ions and induced depolarization and phase field simulation of multilayer nanocomposites; (e) Breakdown strength of multilayer composites and control group; (f) Discharged energy density of different types of composites
[1] |
ZHANG X, LI B W, DONG L, et al. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Advanced Materials Interfaces, 2018, 5(11): 1800096.
DOI URL |
[2] |
TAN D Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Advanced Functional Materials, 2020, 30(18): 1808567.
DOI URL |
[3] | XIE B, WANG Q, ZHANG Q, et al. High energy storage performance of PMMA nanocomposites utilizing hierarchically structured nanowires based on interface engineering. ACS Applied Materials & Interfaces, 2021, 13(23): 27382. |
[4] | HUANG X, SUN B, ZHU Y, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science, 2019, 100: 187. |
[5] | YANG M Z, JIANG J Y, SHEN Y. Progress in the research of high energy density dielectric energy storage materials. Journal of Silicates, 2021, 49(7): 1249. |
[6] |
HAN Z, WANG Q. Recent progress on dielectric polymers and composites for capacitive energy storage. iEnergy, 2022, 1(1): 50.
DOI URL |
[7] | HU H, ZHANG F, LUO S, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy, 2020, 74: 104844. |
[8] |
GUO M, JIANG J, SHEN Z, et al. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Materials Today, 2019, 29: 49.
DOI URL |
[9] |
XIE B, ZHANG H, ZHANG Q, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. Journal of Materials Chemistry A, 2017, 5(13): 6070.
DOI URL |
[10] |
ZHAO C, HUANG Y, WU J. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat, 2020, 2(6): 1163.
DOI URL |
[11] |
LI L, XIE B, LIU Z, et al. Improved energy storage performance of Ba0.4Sr0.6TiO3 by doping high polarization BiFeO3. Ceramics International, 2021, 47(10): 14647.
DOI URL |
[12] | DAI Z, XIE J, LIU W, et al. Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Applied Materials & Interfaces, 2020, 12(27): 30289. |
[13] |
YANG H, YAN F, LIN Y, et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. Journal of the European Ceramic Society, 2018, 38(4): 1367.
DOI URL |
[14] |
ZHANG Q, TONG H, CHEN J, et al. High recoverable energy density over a wide temperature range in Sr modified (Pb,La)-(Zr,Sn,Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Applied Physics Letters, 2016, 109(26): 262901.
DOI URL |
[15] | ZHANG Q, BHARTI V, KAVARNOS G. Poly(vinylidene fluoride) (PVDF) and its copolymers. Encyclopedia of Smart Materials, 2002, 44: 234. |
[16] | WAN B Q, ZHENG M S, CHA J W. Advances in polyimide composite energy storage dielectric materials. Insulation Materials, 2021, 54(11): 23. |
[17] |
XIE B, ZHANG Q, ZHANG L, et al. Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure. Nano Energy, 2018, 54: 437.
DOI URL |
[18] | PING J B, FENF Q K, ZHENG M M, et al. Preparation and dielectric/energy storage properties of surface-modified polypropylene films. Insulation Materials, 2022, 55(5): 49. |
[19] |
THAKUR Y, ZHANG B, DONG R, et al. Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy, 2017, 32: 73.
DOI URL |
[20] |
ZHANG T, ZHAO X, ZHANG C, et al. Polymer nanocomposites with excellent energy storage performances by utilizing the dielectric properties of inorganic fillers. Chemical Engineering Journal, 2021, 408: 127314.
DOI URL |
[21] | WANG J, LIU S H, CHEN C Q, et al. Interfacial modification and energy storage properties of barium titanate-based/polyvinylidene fluoride composite dielectric materials. Journal of Physics, 2020, 69(21): 59. |
[22] |
LI Y, ZHOU Y, ZHU Y, et al. Polymer nanocomposites with high energy density and improved charge-discharge efficiency utilizing hierarchically-structured nanofillers. Journal of Materials Chemistry A, 2020, 8(14): 6576.
DOI URL |
[23] |
XIE B, WANG T, CAI J, et al. High energy density of ferroelectric polymer nanocomposites utilizing PZT@SiO2 nanocubes with morphotropic phase boundary. Chemical Engineering Journal, 2022, 434: 134659.
DOI URL |
[24] |
WANG P J, ZHOU D, GUO H H, et al. Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core-shell BaTiO3@MgO structures as the filler. Journal of Materials Chemistry A, 2020, 8(22): 11124.
DOI URL |
[25] |
PAN Z, YAO L, ZHAI J, et al. Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. Journal of Materials Chemistry A, 2016, 4(34): 13259.
DOI URL |
[26] |
LIU F, LI Q, CUI J, et al. High-energy-density dielectric polymer nanocomposites with trilayered architecture. Advanced Functional Materials, 2017, 27(20): 1606292.
DOI URL |
[27] |
LIANG X, YU X, LV L, et al. BaTiO3 internally decorated hollow porous carbon hybrids as fillers enhancing dielectric and energy storage performance of sandwich-structured polymer composite. Nano Energy, 2020, 68: 104351.
DOI URL |
[28] |
WANG Y, CUI J, YUAN Q, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Advanced Materials, 2015, 27(42): 6658.
DOI |
[29] |
JIANG J, SHEN Z, QIAN J, et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Materials, 2019, 18: 213.
DOI URL |
[30] | JI X M, SUN B Z, LI C, et al. Research progress on enhancing dielectric energy storage density of polymer matrix composites using multilayer thin film technology. Materials Guide, 2022, 36(9): 185. |
[31] |
WANG Y, CHEN J, LI Y, et al. Multilayered hierarchical polymer composites for high energy density capacitors. Journal of Materials Chemistry A, 2019, 7(7): 2965.
DOI URL |
[32] |
NIU Y, DONG J, HE Y, et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano Energy, 2022, 97: 107215.
DOI URL |
[33] |
FENG M, FENG Y, ZHANG T, et al. Recent advances in multilayer- structure dielectrics for energy storage application. Advanced Science, 2021, 8(23): 2102221.
DOI URL |
[34] |
SUN Q, WANG J, ZHANG L, et al. Achieving high energy density and discharge efficiency in multi-layered PVDF-PMMA nanocomposites composed of 0D BaTiO3 and 1D NaNbO3@SiO2. Journal of Materials Chemistry C, 2020, 8(21): 7211.
DOI URL |
[35] |
CHEN J, WANG Y, YUAN Q, et al. Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge- discharge efficiency. Nano Energy, 2018, 54: 288.
DOI URL |
[36] | ZHANG W, GUAN F, JIANG M, et al. Enhanced energy storage performance of all-organic sandwich structured dielectrics with FPE and P(VDF-HFP). Composites Part A: Applied Science and Manufacturing, 2022: 107018. |
[37] |
LUO B, WANG X, WANG H, et al. P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Composites Science and Technology, 2017, 151: 94.
DOI URL |
[38] |
WANG Y, WANG L, YUAN Q, et al. Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization. Nano Energy, 2018, 44: 364.
DOI URL |
[39] |
XIE B, ZHU Y, MARWAT M A, et al. Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. Journal of Materials Chemistry A, 2018, 6(41): 20356.
DOI URL |
[40] |
ZHU Y, ZHU Y, HUANG X, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Advanced Energy Materials, 2019, 9(36): 1901826.
DOI URL |
[41] | LI Q, ZHANG G, LIU F, et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science, 2015, 8(3): 922. |
[42] |
AI D, LI H, ZHOU Y, et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Advanced Energy Materials, 2020, 10(16): 1903881.
DOI URL |
[43] |
CHEN S, MENG G, KONG B, et al. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chemical Engineering Journal, 2020, 387: 123662.
DOI URL |
[44] |
MIAO W, CHEN H, PAN Z, et al. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage. Composites Science and Technology, 2021, 201: 108501.
DOI URL |
[45] |
SUN L, SHI Z, HE B, et al. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Advanced Functional Materials, 2021, 31(35): 2100280.
DOI URL |
[46] |
WANG Y, WANG L, YUAN Q, et al. Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect. Journal of Materials Chemistry A, 2017, 5(22): 10849.
DOI URL |
[47] |
WANG Y, LI Y, WANG L, et al. Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Materials, 2020, 24: 626.
DOI URL |
[48] |
JIANG J, SHEN Z, QIAN J, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy, 2019, 62: 220.
DOI URL |
[49] |
FENG M, CHI Q, FENG Y, et al. High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Composites Part B: Engineering, 2020, 198: 108206.
DOI URL |
[50] |
ZENG Y, SHEN Z H, SHEN Y, et al. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation. Applied Physics Letters, 2018, 112(10): 103902.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||