Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (8): 809-820.DOI: 10.15541/jim20220014
• REVIEW • Previous Articles Next Articles
Received:
2022-01-11
Revised:
2022-03-03
Published:
2022-08-20
Online:
2022-03-10
About author:
WANG Shiwei (1964-), male, professor. E-mail: swwang51@mail.sic.ac.cn
Supported by:
CLC Number:
WANG Shiwei. Progress of Spontaneous Coagulation Casting of Ceramic Slurries Based on Hydrophobic Interaction[J]. Journal of Inorganic Materials, 2022, 37(8): 809-820.
Fig. 1 Schematic diagram of ceramic particles solidified by three-dimensional organic network (a) and photo of translucent Al2O3 sheet (100 mm × 100 mm × 1 mm) (b)
Fig. 2 Simplified structure of PIBM molecule (a) and schematic diagrams of organic network with low and high density by spontaneous coagulation casting (b) and gelcasting (c), respectively
Fig. 4 Effect of hydrophobic groups on spontaneous coagulation (a) Hydrophobic modification reaction; (b) Schematic diagram of ceramic particle dispersion and hydrophobic association curing mechanism
Organic ammonium salt | Molecular weight | Solubility of Isobam after hydrophobic modification |
---|---|---|
TMAC (Tetramethyl ammonium chloride) | 109.6 | Soluble |
TEAC (Tetraethylammonium chloride) | 165.7 | Soluble |
MTAC (Methyltributylammonium chloride) | 235.8 | Soluble |
OTAC (Octyltrimethylammonium chloride) | 207.8 | Insoluble |
DTAC (Dodecyltrimethylammonium chloride) | 263.0 | Insoluble |
Table 1 Dissolution of Isobam 600 AF after different hydrophobic chain modification
Organic ammonium salt | Molecular weight | Solubility of Isobam after hydrophobic modification |
---|---|---|
TMAC (Tetramethyl ammonium chloride) | 109.6 | Soluble |
TEAC (Tetraethylammonium chloride) | 165.7 | Soluble |
MTAC (Methyltributylammonium chloride) | 235.8 | Soluble |
OTAC (Octyltrimethylammonium chloride) | 207.8 | Insoluble |
DTAC (Dodecyltrimethylammonium chloride) | 263.0 | Insoluble |
Fig. 7 Schematic diagram of stabilized foam with hydrophobized ceramic particles (a) and corresponding magnification part (showing a modified dispersant on a particle) (b)
Fig. 8 Pictures of wet green bodies before (a) and after (b) joining, and effect of syneresis time on flexural strength of sintered samples (1600 ℃×2 h) derived from wet green bodies (c) [54]
Fig. 10 Density difference of ceramic green bodies prepared by different dispersion systems (a) and photos of sintered samples (280 mm×130 mm×20 mm)(b)[56]
Fig. 12 Schematic diagram of orientation of the platelet under shear flow (a), surface of the green body with platelet (b), XRD patterns of the green bodies sintered at different temperatures (c), and the influence of the content and type of the platelet on the linear transmittance of the ceramic (1 mm thick) (d)[61]
[1] | 鈴木宏, 内村勝次, 藤原徳仁. セラミックス大型部品用浸透Ⅴプロセスの開発. 素形材, 2007, 12: 21-24. |
[2] | www.surmet.com/products and applications/Domes and IR optics/ index.php. 2021-12-22. |
[3] | OMATETE O O, JANNEY M A, STREHLOW R A. Gelcasting-a new ceramic forming process. Am. Ceram. Soc. Bull., 1991, 70: 1641-1649. |
[4] |
YANG J L, YU J L, HUANG Y. Recent development in gelcasting of ceramics. J. Euro. Ceram. Soc., 2011, 31(4): 2569-2591.
DOI URL |
[5] |
TALLON C, FRANK G V. Recent trends in shape forming from colloidal processing: a review. J. Ceram. Soc. Jpn., 2011, 119(1387): 147-160.
DOI URL |
[6] | GRAULE T J, BAADER F H, GAUCKLER L J. Casting uniform ceramics with direct coagulation. Chemtech, 1995, 25(6): 31-31. |
[7] | 杨燕, 岛井骏藏, 周国红, 等. 一种制备陶瓷坯体的方法. CN103130509B. |
[8] |
MORISSETTE S L, LEWIS J A. Chemorheoloy of aqueous-based alumina-poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc., 1999, 82(3): 521-528.
DOI URL |
[9] |
CHABERT F, DUNSTAN D E, FRANKS G V. Cross-linked polyvinyl alcohol as a binder for gelcasting and green machining. J. Am. Ceram. Soc., 2008, 91(10): 3138-3146.
DOI URL |
[10] |
HANSEN E W, HOLM K H, JAHR D M, et al. Reaction of poly(vinyl alcohol) and dialdehydes during gel formation probed by 1H N.M.R.-a kinetic study. Polymer, 1997, 38(19): 4863-4871.
DOI URL |
[11] |
JOHNSON S B, DUNSTAN D E, FRANKS G V. A novel thermally activated crosslinking agent for chitosan in aqueous solution: a rheological investigation. Colloid Poly. Sci., 2004, 282: 602-612.
DOI URL |
[12] |
MAO X J, SHIMAI S, DONG M J, et al. Gelcasting of alumina using epoxy resin as gelling agent. J. Am. Ceram. Soc., 2007, 90(3): 986-988.
DOI URL |
[13] | TALLON C, JACH D, MORENO, et al. Gelcasting of alumina suspensions containing nanoparticles with glycerol monoacrylate. J. Am. Ceram. Soc., 2009, 29: 875-880. |
[14] |
WIECINSKA P, SZAFRAN M, SAKKA Y, et al. Gelcasting of alumina with a new monomer synthesized from glucose. J. Euro. Ceram. Soc., 2010, 30(8): 1795-1801.
DOI URL |
[15] |
FANELLI A J, SILVERS R D, FREI W S, et al. New aqueous injection molding process for ceramic powder. J. Am. Ceram. Soc., 1989, 72(10): 1833-1836.
DOI URL |
[16] |
JIA Y, KANNO Y, XIE Z P. Fabrication of alumina green body through gelcasting process using alginate. Mater. Lett., 2003, 57(16): 2530-2534.
DOI URL |
[17] |
LYCKFELDT O, BRANDT J, LESCA S. Protein forming-a novel shaping technique for ceramics. J. Eur. Ceram. Soc., 2000, 20(14/15): 2551-2559.
DOI URL |
[18] |
ADOLFSSON E. Gelcasting of zirconia using agarose. J. Am. Ceram. Soc., 2006, 89(6): 1897-1902.
DOI URL |
[19] |
CHEN Y L, XIE Z P, HUANG Y. Alumina casting based on gelation of gelatin. J. Eur. Ceram. Soc., 1999, 19(2): 271-275.
DOI URL |
[20] | 杨金龙, 许杰, 干科. 陶瓷浓悬浮体新型固化技术及其原理. 北京: 清华大学出版社, 2020. |
[21] | 卜景龙, 刘开琪, 王志发, 等. 凝胶注模成型制备高温结构陶瓷. 北京: 化学工业出版社, 2008. |
[22] | 杨金龙, 黄勇. 陶瓷新型胶态成型工艺, 2版. 北京: 清华大学出版社, 2010. |
[23] | 陈大明. 先进陶瓷材料的注凝技术与应用. 北京: 国防工业出版社, 2011. |
[24] | 王小锋, 王日初. 氧化铍陶瓷的凝胶注模成型. 长沙: 中南大学出版社, 2012. |
[25] |
MAO X J, SHIMAI S, DONG M J, et al. Gelcasting of alumina using epoxy resin as a gelling agent. J. Am. Ceram. Soc., 2007, 90(3): 986-988.
DOI URL |
[26] |
MAO X J, SHIMAI S, DONG M J, et al. Gelcasting and pressureless sintering of translucent alumina ceramics. J. Am. Ceram. Soc., 2008, 91(5): 1700-1702.
DOI URL |
[27] |
MAO X J, SHIMAI S, WANG S W. Gelcasting of alumina foams consolidated by epoxy resin. J. Europ. Ceram. Soc., 2008, 28(1): 217-222.
DOI URL |
[28] |
JIN L L, MAO X J, WANG S W, et al. Optimization of the rheological properties of yttria suspensions. Ceram. Int., 2009, 35(2): 925-927.
DOI URL |
[29] |
XUE J F, DONG M J, LI J, et al. Gelcasting of aluminum nitride ceramics. J. Am. Ceram. Soc., 2010, 93(4): 928-930.
DOI URL |
[30] |
DONG M J, MAO X J, ZHANG Z Q, et al. Gelcasting of SiC using epoxy resin as gel former. Ceram. Int., 2009, 35(4): 1363-1366.
DOI URL |
[31] |
YANG Y, SHIMAI S, WANG S W. Room-temperature gelcasting of alumina with a water-soluable copolymer. J. Mater. Res., 2013, 28(11): 1512-1516.
DOI URL |
[32] |
SHIMAI S Z, YANG Y, WANG S W, et al. Spontaneous gelcasting of translucent alumina ceramics. Optical Materials Express, 2013, 3: 1000-1006.
DOI URL |
[33] |
QIN X, ZHOU G H, YANG Y, et al. Gelcasting of transparent YAG ceramics by a new gelling system. Ceram. Int., 2014, 40(8): 12745-12750.
DOI URL |
[34] |
ZHANG P, LIU P, SUN Y, et al. Aqueous gelcasting of the transparent MgAl2O4 spinel ceramics. Journal of Alloys and Compounds, 2015, 646: 833-836.
DOI URL |
[35] |
SUN Y, SHIMAI S, PENG X, et al. Fabrication of transparent Y2O3ceramics via aqueous gelcasting. Ceram. Int., 2014, 40(6): 8841-8845.
DOI URL |
[36] |
WANG J, ZHANG F, CHEN F, et al. Fabrication of aluminum oxynitride (γ-AlON) transparent ceramics with modified gelcasting. J. Am. Ceram. Soc., 2014, 97(5): 1353-1355.
DOI URL |
[37] | SHU X, LI J, ZHANG H L, et al. Gelcasting of aluminum nitride using a water-soluble copolymer. J. Inorg. Mater., 2014, 29: 327-330. |
[38] | MAO X J, CHEN H, ZHAO J, et al. Research progress in spontaneous solidification molding. Modern Technical Ceramics, 2019, 40(6): 398-416. |
[39] | 美国陆军实验室. http://www.arl.army.mil/arlreports/2016/ARL-TR-7620.pdf. [2021-12-22]. |
[40] |
YANG Y, WU Y. Tape-casted transparent alumina ceramic wafers. Journal of Materials Research, 2014, 29(19): 2312-2317.
DOI URL |
[41] |
LU Y J, GAN K, HUO W L, et al. Dispersion and gelation behavior of alumina suspensions with Isobam. Ceram. Int., 2018, 44(10): 11357-11363.
DOI URL |
[42] |
MARSICO C A, ORLICKI J A, BLAIR V L. Investigation of room- temperature super-stabilized suspension casting system mechanism. J. Am. Ceram. Soc., 2020, 103(3): 1514-1519.
DOI URL |
[43] | 孙怡. 多官能团一元凝胶体系的改性及应用研究. 北京: 中国科学院大学博士学位论文, 2016. |
[44] |
CHEN H, SHIMAI S, ZHAO J, et al. Hydrophobic coagulation of alumina slurries. J. Am. Ceram. Soc., 2021, 104(1): 284-293.
DOI URL |
[45] |
PRABHAKARAN K, RAGHUNATH S, MELKERI A, et al. Novel coagulation method for direct coagulation casting of aqueous alumina slurries prepared using a poly(Acrylate) dispersant. J. Am. Ceram. Soc., 2008, 91(2): 615-619.
DOI URL |
[46] |
GONZENBACH U T, STUDART A R, TERVOORT E, et al. Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc., 2007, 90(1): 16-22.
DOI URL |
[47] | 陈晗. 类单晶结构氧化铝透明陶瓷的形成机制及制备. 北京: 中国科学院大学博士学位论文, 2021. |
[48] | ZHAO J, MAO X J, WANG S W. Alumina ceramic foams with controllable cell structure prepared by direct foaming. Journal of the Chinese Ceramic Society, 2019, 47(9): 1222-1234. |
[49] |
GONZENBACH U T, STUDART A R, TERVOORT E, et al. Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc., 2007, 90(1): 16-22.
DOI URL |
[50] | YANG J L, LIN H, XI X Q, et al. Preparation of particle-stabilized foam slurry and porous alumina ceramics. J. Chin. Ceram. Soc., 2008, 36(2): 220-223. |
[51] |
YU J L, YANG J L, LI S, et al. Preparation of Si3N4 foam ceramics with nest-like cell structure by particle-stabilized foams. J. Am. Ceram. Soc., 2012, 95(4): 1229-1233.
DOI URL |
[52] |
CHUANUWATANAKUL C, TALLON C, DUNSTAN D E, et al. Producing large complex-shaped ceramic particle stabilized foams. J. Am. Ceram. Soc., 2013, 96(5): 1407-1413.
DOI URL |
[53] | 彭翔. 大尺寸氧化铝陶瓷的注凝成型研究. 北京: 中国科学院大学博士学位论文, 2016. |
[54] |
PENG X, SHIMAI S, SUN Y, et al. Wet green-state joining of alumina ceramics without paste. J. Am. Ceram. Soc., 2015, 98(9): 2728-2731.
DOI URL |
[55] |
DI Z, SHIMAI S, ZHAO J, et al. Dewatering of spontaneous- coagulation-cast alumina ceramic gel by filtrating with low pressure. Ceram. Int., 2019, 45(10): 12789-12794.
DOI URL |
[56] |
DI Z, SHIMAI S, ZHAO J, et al. Density difference in pressure- filtrated wet cakes produced from spontaneous gelling slurries. J. Am. Ceram. Soc., 2020, 103(2): 1396-1403.
DOI URL |
[57] |
CHEN H, SHIMAI S, ZHAO J, et al. Pressure filtration assisted gel casting in translucent alumina ceramics fabrication. Ceram. Int., 2018, 44(14): 16572-16576.
DOI URL |
[58] |
KRELL A, BLANK P, MA H W, et al. Processing of high-density submicrometer Al2O3 for new applications. J. Am. Ceram. Soc., 2003, 86(4): 546-553.
DOI URL |
[59] |
MAO X J, WANG S W, SHIMAI S, et al. Transparent polycrystalline alumina ceramics with orientated optical axes. J. Am. Ceram. Soc., 2008, 91(10): 3431-3433.
DOI URL |
[60] |
YI H L, MAO X J, ZHOU G H, et al. Crystal plane evolution of grain oriented alumina ceramics with high transparency. Ceram. Int., 2012, 38(7): 5557-5561.
DOI URL |
[61] |
CHEN H, SHIMAI S, ZHAO J, et al. Highly oriented α-Al2O3 transparent ceramics shaped by shear force. J. Europ. Ceram. Soc., 2021, 41(6): 3838-3843.
DOI URL |
[62] |
CHEN H, ZHAO J, SHIMAI S, et al. High transmittance and grain- orientated alumina ceramics fabricated by adding fine template particles. Journal of Advanced Ceramics, 2022, 11(4): 582-588.
DOI URL |
[63] |
YANG Y, SHIMAI S, SUN Y, et al. Fabrication of porous Al2O3 ceramics by rapid gelation and mechanical foaming. Journal of Materials Research, 2013, 28(15): 2012-2016.
DOI URL |
[64] | 赵瑾. 表面活性剂疏水修饰陶瓷颗粒制备泡沫陶瓷. 北京: 中国科学院大学博士学位论文, 2018. |
[65] |
ZHAO J, YANG C, SHIMAI S, et al. The effect of wet foam stability on the microstructure and strength of porous ceramics. Ceram. Int., 2018, 44: 269-274.
DOI URL |
[66] |
ZHAO J, SHIMAI S, ZHOU G H, et al. Ceramic foams shaped by oppositely charged dispersant and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 210-216.
DOI URL |
[67] |
WANG L Y, SHIMAI S, WANG S W, et al. High-strength porous alumina ceramics prepared from stable wet foams. Journal of Advanced Ceramics, 2021, 10(4): 852-859.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WU Xiangquan, TENG Jiachen, JI Xiangxu, HAO Yubo, ZHANG Zhongming, XU Chunjie. Textured Porous Al2O3-SiO2 Composite Ceramic Platelet-sphere Slurry: Characteristics and Simulation of Light Intensity Distribution [J]. Journal of Inorganic Materials, 2024, 39(7): 769-778. |
[7] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[8] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[9] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[10] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[11] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[12] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[13] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||