Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (9): 1016-1022.DOI: 10.15541/jim20210739
Special Issue: 【能源环境】锂离子电池(202409); 【能源环境】金属有机框架材料(202309)
• RESEARCH ARTICLE • Previous Articles Next Articles
SU Nana1(), HAN Jingru1, GUO Yinhao1, WANG Chenyu1, SHI Wenhua1, WU Liang1, HU Zhiyi1,2, LIU Jing1, LI Yu1,2(
), SU Baolian1,3
Received:
2021-12-03
Revised:
2022-02-08
Published:
2022-09-20
Online:
2022-02-21
Contact:
LI Yu, professor. E-mail: yu.li@whut.edu.cnAbout author:
SU Nana (1997-), female, Master candidate. E-mail: nana.su@whut.edu.cn
Supported by:
CLC Number:
SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022.
Fig. 3 (a) TEM, (b) HRTEM, (c) HAADF-STEM images, (d) SAED pattern (rectangular area in (c)), and (e-f) corresponding EDX elemental maps of Si@NC (d) Rectangular area in (c); (e-f) Corresponding area in (c), Si (green), C (yellow), N (blue), O (cyan) and Zn (red)
Fig. 5 (a) CV curves at a scanning rate of 0.2 mV/s and (b) charge-discharge curves for initial 3 cycles at 0.2 A/g of Si@NC, (c) rate performances and (d) cycling performances at 0.5 A/g of Si@NC and Si@PC, and (e) long cycling performances of Si@NC, NC and Si@PC at 1 A/g (black circles showing Coulombic efficiencies of Si@NC)
Fig. S3 EIS plots of pure Si, Si@NC and Si@PC, (b) Coulombic efficiencies of Si@NC and pure Si for the first 5 cycles, (c) cycle performance of pure Si at 1 A/g
Anode material | Cycle performance/(mAh·g-1) (Cycle number) | Current density/ (A·g-1) | Rate capability/(mAh·g-1) (Current density/(A·g-1)) | Ref. |
---|---|---|---|---|
Three-dimensional Network Si/C | 666 (500th) | 1 | 760 (5) | This work |
MHR-Si/rGO | 530 (400th) | 1 | 513 (5) | [1] |
Si@C/Co/CNTs | 700 (500th) | 1 | 480 (5) | [2] |
Pseudographite/Si/Ni | 800 (500th) | 1 | 271 (5) | [3] |
Si@void@C/C-2 | 450 (500th) | 1 | 410 (3.2) | [4] |
Yolk-shell structured Si-based anode | 657 (200th) | 1 | 350 (5) | [5] |
Si@C-ZIF@carbon Nanofibers | 760 (500th) | 1 | 523.9 (5) | [6] |
Table S1 Comparison of electrochemical performance for Si/C composite materials
Anode material | Cycle performance/(mAh·g-1) (Cycle number) | Current density/ (A·g-1) | Rate capability/(mAh·g-1) (Current density/(A·g-1)) | Ref. |
---|---|---|---|---|
Three-dimensional Network Si/C | 666 (500th) | 1 | 760 (5) | This work |
MHR-Si/rGO | 530 (400th) | 1 | 513 (5) | [1] |
Si@C/Co/CNTs | 700 (500th) | 1 | 480 (5) | [2] |
Pseudographite/Si/Ni | 800 (500th) | 1 | 271 (5) | [3] |
Si@void@C/C-2 | 450 (500th) | 1 | 410 (3.2) | [4] |
Yolk-shell structured Si-based anode | 657 (200th) | 1 | 350 (5) | [5] |
Si@C-ZIF@carbon Nanofibers | 760 (500th) | 1 | 523.9 (5) | [6] |
[1] | CAI Y, WANG H E, ZHAO X, et al. Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Applied Materials & Interfaces, 2017, 9(12): 10652-10663. |
[2] |
ZHANG L, SHAO Q, ZHANG J. An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Materials Reports: Energy, 2021, 1(1): 100002.
DOI URL |
[3] | LU Y, RONG X, HU Y S, et al. Research and development of advanced battery materials in China. Energy Storage Materials, 2019, 23: 144-153. |
[4] |
GANNETT C N, MELECIO-ZAMBRANO L, THEIBAULT M, et al. Organic electrode materials for fast-rate, high-power battery applications. Materials Reports: Energy, 2021, 1(1): 100008.
DOI URL |
[5] |
WU F, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49(5): 1569-1614.
DOI URL |
[6] |
LI G, WANG Y, GUO H, et al. Direct plasma phosphorization of Cu foam for Li ion batteries. Journal of Materials Chemistry A, 2020, 8(33): 16920-16925.
DOI URL |
[7] |
LIU J, ZHANG Q, ZHANG T, et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Advanced Functional Materials, 2015, 25(23): 3599-3605.
DOI URL |
[8] | SUN Z, WANG G, CAI T, et al. Sandwich-structured graphite- metallic silicon@C nanocomposites for Li-ion batteries. Electrochimica Acta, 2016, 191: 299-306. |
[9] |
YANG Y, YUAN W, KANG W, et al. Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. Nanoscale, 2020, 12(14): 7461-7484.
DOI URL |
[10] |
AN W, GAO B, MEI S, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Communications, 2019, 10(1): 1-11.
DOI URL |
[11] |
AN Y, FEI H, ZENG G, et al. Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano, 2018, 12(5): 4993-5002.
DOI URL |
[12] | LIU N, HUO K, MCDOWELL M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports, 2013, 3(1): 1-7. |
[13] |
PARK S, SUNG J, CHAE S, et al. Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano, 2020, 14(9): 11548-11557.
DOI URL |
[14] | WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnolagy, 2012, 7(5): 310-315. |
[15] | ZHANG Z, LI H. Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability. Applied Surface Science, 2020, 514:145920. |
[16] |
WANG J, HUANG W, KIM Y S, et al. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Research, 2020, 13(6): 1558-1563.
DOI URL |
[17] | BAI Y, ZENG M, WU X, et al. Three-dimensional cage-like Si@ZIF-67 core-shell composites for high-performance lithium storage. Applied Surface Science, 2020, 510: 145477. |
[18] |
XU Y, ZHU Y, WANG C. Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2(25): 9751-9757.
DOI URL |
[19] |
HERTZBERG B, ALEXEEV A, YUSHIN G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. Journal of the American Chemical Society, 2010, 132(25): 8548-8549.
DOI URL |
[20] |
PARK M H, KIM M G, JOO J, et al. Silicon nanotube battery anodes. Nano Letters, 2009, 9(11): 3844-3847.
DOI URL |
[21] |
JIA H, LI X, SONG J, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium- ion battery anodes. Nature Communications, 2020, 11(1): 1-9.
DOI URL |
[22] |
LIU B, SOARES P, CHECKLES C, et al. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414-3419.
DOI URL |
[23] |
WU L, LI Y, FU Z Y, et al. Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7(11): 1667-1701.
DOI URL |
[24] |
ZHOU N, DONG W D, ZHANG Y J, et al. Embedding tin disulfide nanoparticles in two-dimensional porous carbon nanosheet interlayers for fast-charging lithium-sulfur batteries. Science China Materials, 2021, 64(11): 2697-2709.
DOI URL |
[25] |
XIE C, XU Q, SARI H M K, et al. Elastic buffer structured Si/C microsphere anodes via polymerization-induced colloid aggregation. Chemical Communications, 2020, 56(50): 6770-6773.
DOI URL |
[26] |
HONG Y, DONG H, LI J, et al. Enhanced lithium storage performance of porous Si/C composite anodes using a recrystallized NaCl template. Dalton Transactions, 2021, 50(8): 2815-2823.
DOI URL |
[27] | LI C, WANG Y Y, LI H Y, et al. Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li-Se battery. Journal of Energy Chemistry, 2021, 59: 396-404. |
[28] | SONG J P, WU L, DONG W D, et al. MOF-derived nitrogen- doped core-shell hierarchical porous carbon confining selenium for advanced lithium-selenium battery. Nanoscale, 2019, 11: 6970-6981 |
[29] |
WANG X, MA X, WANG H, et al. A zinc(II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides. Microchimica Acta, 2017, 184(10): 3681-3687.
DOI URL |
[30] |
BAI X J, LIU C, HOU M, et al. Silicon/CNTs/graphene free- standing anode material for lithium-ion battery. Journal of Inorganic Materials, 2017, 32(7): 705-712.
DOI URL |
[31] |
CHAE S, XU Y, YI R, et al. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Advanced Materials, 2021, 33(40): 2103095.
DOI URL |
[32] | HOU Z, LIU H, CHEN P, et al. Nanocaging silicon nanoparticles into a porous carbon framework toward enhanced lithium-ion storage. Particle & Particle Systems Characterization, 2021: 38(9): 2100107. |
[33] | ZHANG Y, CHENG Y, SONG J, et al. Functionalization-assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries. Carbon, 2021, 181: 300-309. |
[34] | WANG L, WANG Z, XIE L, et al. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Applied Materials & Interfaces, 2019, 11(18): 16619-16628. |
[35] | TU Z, YANG G, SONG H, et al. Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode. ACS Applied Materials & Interfaces, 2017, 9(1): 439-446. |
[36] | CUI J, CUI Y, LI S, et al. Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(44): 30239-30247. |
[1] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[2] | PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911-919. |
[3] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
[4] | SU Nan, QIU Jieshan, WANG Zhiyu. F-doped Carbon Coated Nano-Si Anode with High Capacity: Preparation by Gaseous Fluorination and Performance for Lithium Storage [J]. Journal of Inorganic Materials, 2023, 38(8): 947-953. |
[5] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[6] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[7] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[8] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[9] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[10] | SU Dongliang, CUI Jin, ZHAI Pengbo, GUO Xiangxin. Mechanism Study on Garnet-type Li6.4La3Zr1.4Ta0.6O12 Regulating the Solid Electrolyte Interphases of Si/C Anodes [J]. Journal of Inorganic Materials, 2022, 37(7): 802-808. |
[11] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[12] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[13] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[14] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[15] | WANG Ying, ZHANG Wenlong, XING Yanfeng, CAO suqun, DAI Xinyi, LI Jingze. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V [J]. Journal of Inorganic Materials, 2021, 36(9): 999-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||