Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1237-1246.DOI: 10.15541/jim20210247
• REVIEW • Next Articles
LIU Qian1,2(), WANG Jiacheng1,2, ZHOU Zhenzhen1, XU Xiaoke1
Received:
2021-04-13
Revised:
2021-05-24
Published:
2021-12-20
Online:
2021-06-01
About author:
LIU Qian(1958-), female, professor. E-mail: qianliu@mail.sic.ac.cn
Supported by:
CLC Number:
LIU Qian, WANG Jiacheng, ZHOU Zhenzhen, XU Xiaoke. Research Progress on High Throughput Parallel Synthesis of Micro-nano Powders Libraries[J]. Journal of Inorganic Materials, 2021, 36(12): 1237-1246.
Fig. 1 Front view of the experimental setup for visible-light irradiation of the photocatalysts libraries[9] Ⓐ Array of lamps (Osram Dulus S G23, 11W); Ⓑ Bath of frosted glass filled with 1 mol/L K2CrO4 solution; Ⓒ Library of 45 HPLC flasks arranged in five columns and nine rows; Ⓓ Orbital shaker (Heidolph Titramax 100)
Fig. 2 (a) Schematic diagram of drop-on-demand inkjet delivery system (mainly with micro-piezoelectric inkjet head, solution reservoir, x-y moving stage, microreactor and substrate)[12]; (b) schematic diagram of Sol-Gel device (1-box with temperature controlling insides; 4-shaking motor; 5-support rod; 7-reaction chamber; 8-microreactor array)[16]
Fig. 3 (a) Schematic diagram of a typical triple-laser-beam parallel heating system(mainly including laser sources, reflectors, sample library holder and moving platform, computer and controllers)[21]; (b) Schematic diagram of a representative triple channel optical spectrometer(mainly including fiber optical spectrometer, spectral calibration device, modular LE and LED excitation source, sample library holder and moving platform)[22]
Fig. 4 View of the multi-autoclave showing the mode of stacking of the Teflon blocks and one of the alternative designs using Teflon inserts which can be stacked vertically[23]
Fig. 5 (a) Schematic layout of the high-throughput hydrothermal (HiTCH) flow synthesis system, and (b) shematic of freeze-dried powders fired at 1000 ℃ and filled into a PTFE triangular holder[29]
Fig. 6 Schematic diagram (a) and photograph (b) of the ceramic substrate-copper net-metal mask microreactor array, (c) a plastic substrate with the same predrilled shallow wells (2 mm in depth) as the library, then flipped over the synthesized powders into the shallow wells, and (d) a metal plate used to compact powders[39]
Fig. 8 Setup of the microchip-based photocatalyst screening system (a), schematic diagram of the multi-channel array ship with a wedge structure in each channel (b), schematic diagram of the catalyst loading (c), and illustration of the catalyst screening procedure (d)[43] (d1) Loading catalyst particles in the microchannel to form the column; (d2) Introducing MB solution into the channel and recording the initial channel image; (d3) MB degradation under UV light; (d4) Recording the channel image after definite time
Fig. 9 Photos of the microfluidic-based composition and temperature controlling platform with two inlets and 20 outlets (a), details of the micro-reactor arrays (120-230 ℃, 100 holes) and microfluidic chip having Christmas-tree-type structure (b)[48]
Fig. 10 Ternary combi-chem libraries for (a) (Ca,Sr,Mg)2Si5N8: Eu2+, (b) (Ca,Sr,Mg)2Si5N8:Eu2+, (c) (Ca,Sr,Ba)2Si5N8:Eu2+, and (d) (Sr,Ba,Mg)2Si5N8:Eu2+ in terms of photoluminescent intensity and color chromaticity[49] Actual photos taken under 365 nm excitations are also presented
[1] |
HANAK J J. Multiple-sample-concept in materials research - synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci., 1970, 5(11): 964-971.
DOI URL |
[2] |
XIANG X D, SUN X D, BRICENO G, et al. A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738-1740.
DOI URL |
[3] |
VAN DOVER R B, SCHNEEMEYER L D, FLEMING R M. Discovery of a useful thin-film dielectric using a composition- spread approach. Nature, 1998, 392(6672): 162-164.
DOI URL |
[4] |
XIANG X D. Combinatorial materials synthesis and screening: an integrated materials chip approach to discovery and optimization of functional materials. Annu. Rev. Mater. Sci., 1999, 29: 149-171.
DOI URL |
[5] |
KOINUMA H, TAKEUCHI I. Combinatorial solid-state chemistry of inorganic materials. Nat. Mater., 2004, 3(7): 429-438.
DOI URL |
[6] | AMIS E J, XIANG X D, ZHAO J C. Combinatorial materials science: what's new since Edison? Mrs. Bull., 2002, 27(4): 295-297. |
[7] |
REDDINGTON E, SAPIENZA A, GURAU B, et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735-1737.
DOI URL |
[8] |
SCHEIDTMANN J, WEISS P A, MAIER W F. Hunting for better catalysts and materials-combinatorial chemistry and high throughput technology. Appl. Catal. A-Gen., 2001, 222(1/2): 79-89.
DOI URL |
[9] |
LETTMANN C, HINRICHS H, MAIER W F. Combinatorial discovery of new photocatalysts for water purification with visible light. Angew. Chem. Int. Ed., 2001, 40(17): 3160-3164.
DOI URL |
[10] |
WELSCH F G, STOEWE K, MAIER W F. Rapid optical screening technology for direct methanol fuel cell (DMFC) anode and related electrocatalysts. Catal. Today, 2011, 159(1): 108-119.
DOI URL |
[11] |
DOGAN C, STOEWE K, MAIER W F. Optical high-throughput screening for activity and electrochemical stability of oxygen reducing electrode catalysts for fuel cell applications. ACS Comb. Sci., 2015, 17(3): 164-175.
DOI URL |
[12] | 高琛, 鲍俊, 黄孙祥, 等. 用于制备组合材料样品库的难溶物悬浮液喷射装置. 中国, B05C5/00, CN2759615Y. 2004.11.19. |
[13] |
CHAN TING-SHAN, KANG CHIA-CHEN, LIU RU-SHI, et al. Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors. J. Comb. Chem., 2007, 9(3): 343-346.
DOI URL |
[14] |
CHEN LEI, FU YIBING, ZHANG GUOBIN, et al. Optimization of Pr3+, Tb3+, and Sm3+ co-doped (Y0.65Gd0.35)BO3:0.05Eu3+ VUV phosphors through combinatorial approach. J. Comb. Chem., 2008, 10(3): 401-404.
DOI URL |
[15] |
DING JIANJUN, BAO JUN, SUN SONO, et al. Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type (A = Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B = Al and In) binary oxides. J. Comb. Chem., 2009, 11(4): 523-526.
DOI URL |
[16] | 孙松, 魏宇学, 张亚洲, 等. 一种溶胶凝胶并行合成装置. 中国, B01J19/10, CN111420624A. 2020.07.17. |
[17] |
ZHANG KONG, LIU QINGFENG, LIU QIAN, et al. Combinatorial optimization of (YxLu1-x-y)3Al5O12:3yCe green-yellow phosphors. J. Comb. Chem., 2010, 12(4): 453-457.
DOI URL |
[18] |
SU XIAOBIN, ZHANG KONG, LIU QIAN, et al. Combinatorial optimization of (Lu1-xGdx)3Al5O12:3yCe yellow phosphors as precursors for ceramic scintillators. ACS Comb. Sci., 2011, 13(1): 79-83.
DOI URL |
[19] |
TANG FU-HAN, ZHUANG JIAN-DONG, FEI FAN, et al. Combinatorial optimization of Ba/Fe-cordierite solid solution (Ba0.05Fe0.1Mg)2Al4Si5O18 for high infrared radiance materials. Chin. J. Chem. Phys., 2012, 25(3): 345-351.
DOI URL |
[20] |
WEI QINHUA, WAN JIEQIONG, LIU GUANGHUI, et al. Combinatorial optimization of La, Ce-co-doped pyrosilicate phosphors as potential scintillator materials. ACS Comb. Sci., 2015, 17(4): 217-223.
DOI URL |
[21] | 刘茜, 余野建定, 汪超越, 等. 阵列样品激光加热系统. 中国, G01N1/44, CN109352182B. 2021.02.12. |
[22] |
ZHOU ZHENZHEN, LIU QIAN, FU YANWEN, et al. Multi-channel fiber optical spectrometer for high-throughput characterization of photoluminescence properties. Rev. Sci. Instrum., 2020, 91(12): 123113.
DOI URL |
[23] | AKPORIAYE D E, DAHL I M, KARLSSON A, et al. Combinatorial approach to the hydrothermal synthesis of zeolites. Angew. Chem. Int. Ed., 1998, 37(5): 609-611. |
[24] |
KLEIN J, LEHMANN C W, SCHMIDT H W, et al. Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis. Angew. Chem. Int. Ed., 1998, 37(24): 3369-3372.
DOI URL |
[25] |
SENKAN S M. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394(6691): 350-353.
DOI URL |
[26] |
NEWSAM J M, BEIN T, KLEIN J, et al. High throughput experimentation for the synthesis of new crystalline microporous solids. Micropor. Mesopor. Mat., 2001, 48(1/2/3): 355-365.
DOI URL |
[27] | 魏宇学, 孙松, 张亚洲 等. 一种水热溶剂热并行合成装置. 中国, B01J19/00, CN111437780A. 2020.07.24. |
[28] |
WEI YUXUE, WANG AZHU, LV LINGLING, et al. Synchrotron infrared spectroscopic high-throughput screening of multi-composite photocatalyst films for air purification. Catal. Sci. Technol., 2021, 11(3): 790-794.
DOI URL |
[29] |
WENG XIAOLE, COCKCROFT JEREMY K, HYETT GEOFFREY, et al. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram. J. Comb. Chem., 2009, 11(5): 829-834.
DOI URL |
[30] |
QUESADA-CABRERA RAUL, WENG XIAOLE, HYET GEOFF, et al. High-throughput continuous hydrothermal synthesis of nanomaterials (Part II): unveiling the as-prepared CexZryYzO2-δ phase diagram. ACS Comb. Sci., 2013, 15(9): 458-463.
DOI URL |
[31] |
LIN TIAN, KELLICI SUELA, GONG KENAN, et al. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. J. Comb. Chem., 2010, 12(3): 383-392.
DOI URL |
[32] |
ALEXANDER SAM J, LIN TIAN, BRETT DAN J L, et al. A combinatorial nanoprecursor route for direct solid state chemistry: discovery and electronic properties of new iron-doped lanthanum nickelates up to La4Ni2FeO10-δ. Solid State Ionics, 2012, 225: 176-181.
DOI URL |
[33] |
GOODALL JOSEPHINE B M, ILLSLEY DEREK, LINES ROBERT, et al. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants. ACS Comb. Sci., 2015, 17(2): 100-112.
DOI URL |
[34] |
JOHNSON IAN D, LUEBKE MECHTHILD, WU ON YING, et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries. J. Power Sources, 2016, 302: 410-418.
DOI URL |
[35] |
HOWARD DOUGAL P, MARCHAND PETER, MCCAFFERTY LIAM, et al. High-throughput continuous hydrothermal synthesis of transparent conducting aluminum and gallium Co-doped zinc oxides. ACS Comb. Sci., 2017, 19(4): 239-245.
DOI URL |
[36] |
GROVES ALEXANDRA R, ASHTON THOMAS E, DARR JAWWAD A. High throughput synthesis and screening of oxygen reduction catalysts in the MTiO3 (M=Ca, Sr, Ba) perovskite phase diagram. ACS Comb. Sci., 2020, 22(12): 750-756.
DOI URL |
[37] |
SURESH K, PATIL K C. Preparation and properties of fine particle nickel zinc ferrites-a comparative study of combustion and precursor methods. J. Solid State Chem., 1992, 99(1): 12-17.
DOI URL |
[38] |
KINGSLEY J J, PEDERSON L R. Combustion synthesis of perovskite LnCrO3 powders using ammonium dichromate. Mater. Lett., 1993, 18(1/2): 89-96.
DOI URL |
[39] |
LUO Z L, GENG B, BAO J, et al. Parallel solution combustion synthesis for combinatorial materials studies. J. Comb. Chem., 2005, 7(6): 942-946.
DOI URL |
[40] |
LU H, SCHMIDT M A, JENSEN K F. Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip, 2001, 1(1): 22-28.
DOI URL |
[41] |
LIU DONGFEI, CITO SALVATORE, ZHANG YUEZHOU, et al. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv. Mater., 2015, 27(14): 2298-2304.
DOI URL |
[42] | 叶嘉明. 一种微流控组合化学反应芯片. 中国, B01L3/00, CN103386338A. 2013.11.13. |
[43] |
ZHANG HAO, WANG JING-JING, FAN JIE, et al. Microfluidic chip-based analytical system for rapid screening of photocatalysts. Talanta, 2013, 116: 946-950.
DOI URL |
[44] | 钟澄, 宋志双, 胡文彬. 合成金属基粉体材料的装置及其高通量合成方法. 中国, B22F9/24, CN105935780B. 2018.05.04. |
[45] | 钟澄, 刘晓瑞, 刘杰, 等. 一种系统集成高通量制备和高通量电化学测试的方法. 中国, G01N27/26, CN111896595A. 2020.11.06. |
[46] | 钟澄, 刘杰, 邓意达, 等. 梯度加热的微流控合成材料装置. 中国, B01L3/00, CN109622087B. 2021.04.02. |
[47] | 钟澄, 刘杰, 胡文彬. 微流控高通量合成和电化学表征一体化装置. 中国, G01N27/48, CN109839418B. 2020.07.14. |
[48] |
HU YANG, LIU BIN, WU YATING, et al. Facile high throughput wet-chemical synthesis approach using a microfluidic-based composition and temperature controlling platform. Front. Chem., 2020, 8: 579828.
DOI URL |
[49] |
LEE BONGHYUN, LEE SANGJUN, JEONG HYUNG GON, et al. Solid-state combinatorial screening of (Sr,Ca,Ba,Mg)2Si5N8:Eu2+ phosphors. ACS Comb. Sci., 2011, 13(2): 154-158.
DOI URL |
[50] |
HE GANG, LIU GUANGHUA, YANG ZENGCHAO, et al. Preparation of YAG glass-ceramic by combustion synthesis under high gravity. Ceram. Int., 2014, 40(9): 15265-15271.
DOI URL |
[51] |
YANG ZENGCHAO, LIU GUANGHUA, LI JIANGTAO, et al. Preparation of transparent Y2O3-Al2O3-SiO2 glasses by high-gravity combustion synthesis with heating assistance. J. Am. Ceram. Soc., 2012, 95(6): 1799-1802.
DOI URL |
[52] |
LIU GUANGHUA, LI JIANGTAO, HE BIN. Melt-casting of Si-Al-Y-O glasses and glass-ceramics by combustion synthesis under high gravity. J. Non-cryst. Solids., 2011, 357(7): 1764-1767.
DOI URL |
[53] |
SHUANG SHUANG, LI HONGHUA, HE GANG, et al. High-throughput automatic batching equipment for solid state ceramic powders. Rev. Sci. Instrum., 2019, 90(8): 083904.
DOI URL |
[54] | 双爽, 李宏华, 贺刚 等. 一种高通量粉体的制备装置及其使用方法. 中国, B28B3/04, CN110434982A. 2019.11.12. |
[55] |
LI HONGHUA, HE GANG, LI YONG, et al. Combinatorial synthesis of multiple ZrxTi1-xC by electric field-assisted combustion synthesis. J. Eur. Ceram. Soc., 2021, 41(1): 1020-1024.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||