Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1237-1246.DOI: 10.15541/jim20210247
• REVIEW • Next Articles
LIU Qian1,2(), WANG Jiacheng1,2, ZHOU Zhenzhen1, XU Xiaoke1
Received:
2021-04-13
Revised:
2021-05-24
Published:
2021-12-20
Online:
2021-06-01
About author:
LIU Qian(1958-), female, professor. E-mail: qianliu@mail.sic.ac.cn
Supported by:
CLC Number:
LIU Qian, WANG Jiacheng, ZHOU Zhenzhen, XU Xiaoke. Research Progress on High Throughput Parallel Synthesis of Micro-nano Powders Libraries[J]. Journal of Inorganic Materials, 2021, 36(12): 1237-1246.
Fig. 1 Front view of the experimental setup for visible-light irradiation of the photocatalysts libraries[9] Ⓐ Array of lamps (Osram Dulus S G23, 11W); Ⓑ Bath of frosted glass filled with 1 mol/L K2CrO4 solution; Ⓒ Library of 45 HPLC flasks arranged in five columns and nine rows; Ⓓ Orbital shaker (Heidolph Titramax 100)
Fig. 2 (a) Schematic diagram of drop-on-demand inkjet delivery system (mainly with micro-piezoelectric inkjet head, solution reservoir, x-y moving stage, microreactor and substrate)[12]; (b) schematic diagram of Sol-Gel device (1-box with temperature controlling insides; 4-shaking motor; 5-support rod; 7-reaction chamber; 8-microreactor array)[16]
Fig. 3 (a) Schematic diagram of a typical triple-laser-beam parallel heating system(mainly including laser sources, reflectors, sample library holder and moving platform, computer and controllers)[21]; (b) Schematic diagram of a representative triple channel optical spectrometer(mainly including fiber optical spectrometer, spectral calibration device, modular LE and LED excitation source, sample library holder and moving platform)[22]
Fig. 4 View of the multi-autoclave showing the mode of stacking of the Teflon blocks and one of the alternative designs using Teflon inserts which can be stacked vertically[23]
Fig. 5 (a) Schematic layout of the high-throughput hydrothermal (HiTCH) flow synthesis system, and (b) shematic of freeze-dried powders fired at 1000 ℃ and filled into a PTFE triangular holder[29]
Fig. 6 Schematic diagram (a) and photograph (b) of the ceramic substrate-copper net-metal mask microreactor array, (c) a plastic substrate with the same predrilled shallow wells (2 mm in depth) as the library, then flipped over the synthesized powders into the shallow wells, and (d) a metal plate used to compact powders[39]
Fig. 8 Setup of the microchip-based photocatalyst screening system (a), schematic diagram of the multi-channel array ship with a wedge structure in each channel (b), schematic diagram of the catalyst loading (c), and illustration of the catalyst screening procedure (d)[43] (d1) Loading catalyst particles in the microchannel to form the column; (d2) Introducing MB solution into the channel and recording the initial channel image; (d3) MB degradation under UV light; (d4) Recording the channel image after definite time
Fig. 9 Photos of the microfluidic-based composition and temperature controlling platform with two inlets and 20 outlets (a), details of the micro-reactor arrays (120-230 ℃, 100 holes) and microfluidic chip having Christmas-tree-type structure (b)[48]
Fig. 10 Ternary combi-chem libraries for (a) (Ca,Sr,Mg)2Si5N8: Eu2+, (b) (Ca,Sr,Mg)2Si5N8:Eu2+, (c) (Ca,Sr,Ba)2Si5N8:Eu2+, and (d) (Sr,Ba,Mg)2Si5N8:Eu2+ in terms of photoluminescent intensity and color chromaticity[49] Actual photos taken under 365 nm excitations are also presented
[1] |
HANAK J J. Multiple-sample-concept in materials research - synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci., 1970, 5(11): 964-971.
DOI URL |
[2] |
XIANG X D, SUN X D, BRICENO G, et al. A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738-1740.
DOI URL |
[3] |
VAN DOVER R B, SCHNEEMEYER L D, FLEMING R M. Discovery of a useful thin-film dielectric using a composition- spread approach. Nature, 1998, 392(6672): 162-164.
DOI URL |
[4] |
XIANG X D. Combinatorial materials synthesis and screening: an integrated materials chip approach to discovery and optimization of functional materials. Annu. Rev. Mater. Sci., 1999, 29: 149-171.
DOI URL |
[5] |
KOINUMA H, TAKEUCHI I. Combinatorial solid-state chemistry of inorganic materials. Nat. Mater., 2004, 3(7): 429-438.
DOI URL |
[6] | AMIS E J, XIANG X D, ZHAO J C. Combinatorial materials science: what's new since Edison? Mrs. Bull., 2002, 27(4): 295-297. |
[7] |
REDDINGTON E, SAPIENZA A, GURAU B, et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735-1737.
DOI URL |
[8] |
SCHEIDTMANN J, WEISS P A, MAIER W F. Hunting for better catalysts and materials-combinatorial chemistry and high throughput technology. Appl. Catal. A-Gen., 2001, 222(1/2): 79-89.
DOI URL |
[9] |
LETTMANN C, HINRICHS H, MAIER W F. Combinatorial discovery of new photocatalysts for water purification with visible light. Angew. Chem. Int. Ed., 2001, 40(17): 3160-3164.
DOI URL |
[10] |
WELSCH F G, STOEWE K, MAIER W F. Rapid optical screening technology for direct methanol fuel cell (DMFC) anode and related electrocatalysts. Catal. Today, 2011, 159(1): 108-119.
DOI URL |
[11] |
DOGAN C, STOEWE K, MAIER W F. Optical high-throughput screening for activity and electrochemical stability of oxygen reducing electrode catalysts for fuel cell applications. ACS Comb. Sci., 2015, 17(3): 164-175.
DOI URL |
[12] | 高琛, 鲍俊, 黄孙祥, 等. 用于制备组合材料样品库的难溶物悬浮液喷射装置. 中国, B05C5/00, CN2759615Y. 2004.11.19. |
[13] |
CHAN TING-SHAN, KANG CHIA-CHEN, LIU RU-SHI, et al. Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors. J. Comb. Chem., 2007, 9(3): 343-346.
DOI URL |
[14] |
CHEN LEI, FU YIBING, ZHANG GUOBIN, et al. Optimization of Pr3+, Tb3+, and Sm3+ co-doped (Y0.65Gd0.35)BO3:0.05Eu3+ VUV phosphors through combinatorial approach. J. Comb. Chem., 2008, 10(3): 401-404.
DOI URL |
[15] |
DING JIANJUN, BAO JUN, SUN SONO, et al. Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type (A = Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B = Al and In) binary oxides. J. Comb. Chem., 2009, 11(4): 523-526.
DOI URL |
[16] | 孙松, 魏宇学, 张亚洲, 等. 一种溶胶凝胶并行合成装置. 中国, B01J19/10, CN111420624A. 2020.07.17. |
[17] |
ZHANG KONG, LIU QINGFENG, LIU QIAN, et al. Combinatorial optimization of (YxLu1-x-y)3Al5O12:3yCe green-yellow phosphors. J. Comb. Chem., 2010, 12(4): 453-457.
DOI URL |
[18] |
SU XIAOBIN, ZHANG KONG, LIU QIAN, et al. Combinatorial optimization of (Lu1-xGdx)3Al5O12:3yCe yellow phosphors as precursors for ceramic scintillators. ACS Comb. Sci., 2011, 13(1): 79-83.
DOI URL |
[19] |
TANG FU-HAN, ZHUANG JIAN-DONG, FEI FAN, et al. Combinatorial optimization of Ba/Fe-cordierite solid solution (Ba0.05Fe0.1Mg)2Al4Si5O18 for high infrared radiance materials. Chin. J. Chem. Phys., 2012, 25(3): 345-351.
DOI URL |
[20] |
WEI QINHUA, WAN JIEQIONG, LIU GUANGHUI, et al. Combinatorial optimization of La, Ce-co-doped pyrosilicate phosphors as potential scintillator materials. ACS Comb. Sci., 2015, 17(4): 217-223.
DOI URL |
[21] | 刘茜, 余野建定, 汪超越, 等. 阵列样品激光加热系统. 中国, G01N1/44, CN109352182B. 2021.02.12. |
[22] |
ZHOU ZHENZHEN, LIU QIAN, FU YANWEN, et al. Multi-channel fiber optical spectrometer for high-throughput characterization of photoluminescence properties. Rev. Sci. Instrum., 2020, 91(12): 123113.
DOI URL |
[23] | AKPORIAYE D E, DAHL I M, KARLSSON A, et al. Combinatorial approach to the hydrothermal synthesis of zeolites. Angew. Chem. Int. Ed., 1998, 37(5): 609-611. |
[24] |
KLEIN J, LEHMANN C W, SCHMIDT H W, et al. Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis. Angew. Chem. Int. Ed., 1998, 37(24): 3369-3372.
DOI URL |
[25] |
SENKAN S M. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394(6691): 350-353.
DOI URL |
[26] |
NEWSAM J M, BEIN T, KLEIN J, et al. High throughput experimentation for the synthesis of new crystalline microporous solids. Micropor. Mesopor. Mat., 2001, 48(1/2/3): 355-365.
DOI URL |
[27] | 魏宇学, 孙松, 张亚洲 等. 一种水热溶剂热并行合成装置. 中国, B01J19/00, CN111437780A. 2020.07.24. |
[28] |
WEI YUXUE, WANG AZHU, LV LINGLING, et al. Synchrotron infrared spectroscopic high-throughput screening of multi-composite photocatalyst films for air purification. Catal. Sci. Technol., 2021, 11(3): 790-794.
DOI URL |
[29] |
WENG XIAOLE, COCKCROFT JEREMY K, HYETT GEOFFREY, et al. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram. J. Comb. Chem., 2009, 11(5): 829-834.
DOI URL |
[30] |
QUESADA-CABRERA RAUL, WENG XIAOLE, HYET GEOFF, et al. High-throughput continuous hydrothermal synthesis of nanomaterials (Part II): unveiling the as-prepared CexZryYzO2-δ phase diagram. ACS Comb. Sci., 2013, 15(9): 458-463.
DOI URL |
[31] |
LIN TIAN, KELLICI SUELA, GONG KENAN, et al. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. J. Comb. Chem., 2010, 12(3): 383-392.
DOI URL |
[32] |
ALEXANDER SAM J, LIN TIAN, BRETT DAN J L, et al. A combinatorial nanoprecursor route for direct solid state chemistry: discovery and electronic properties of new iron-doped lanthanum nickelates up to La4Ni2FeO10-δ. Solid State Ionics, 2012, 225: 176-181.
DOI URL |
[33] |
GOODALL JOSEPHINE B M, ILLSLEY DEREK, LINES ROBERT, et al. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants. ACS Comb. Sci., 2015, 17(2): 100-112.
DOI URL |
[34] |
JOHNSON IAN D, LUEBKE MECHTHILD, WU ON YING, et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries. J. Power Sources, 2016, 302: 410-418.
DOI URL |
[35] |
HOWARD DOUGAL P, MARCHAND PETER, MCCAFFERTY LIAM, et al. High-throughput continuous hydrothermal synthesis of transparent conducting aluminum and gallium Co-doped zinc oxides. ACS Comb. Sci., 2017, 19(4): 239-245.
DOI URL |
[36] |
GROVES ALEXANDRA R, ASHTON THOMAS E, DARR JAWWAD A. High throughput synthesis and screening of oxygen reduction catalysts in the MTiO3 (M=Ca, Sr, Ba) perovskite phase diagram. ACS Comb. Sci., 2020, 22(12): 750-756.
DOI URL |
[37] |
SURESH K, PATIL K C. Preparation and properties of fine particle nickel zinc ferrites-a comparative study of combustion and precursor methods. J. Solid State Chem., 1992, 99(1): 12-17.
DOI URL |
[38] |
KINGSLEY J J, PEDERSON L R. Combustion synthesis of perovskite LnCrO3 powders using ammonium dichromate. Mater. Lett., 1993, 18(1/2): 89-96.
DOI URL |
[39] |
LUO Z L, GENG B, BAO J, et al. Parallel solution combustion synthesis for combinatorial materials studies. J. Comb. Chem., 2005, 7(6): 942-946.
DOI URL |
[40] |
LU H, SCHMIDT M A, JENSEN K F. Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip, 2001, 1(1): 22-28.
DOI URL |
[41] |
LIU DONGFEI, CITO SALVATORE, ZHANG YUEZHOU, et al. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv. Mater., 2015, 27(14): 2298-2304.
DOI URL |
[42] | 叶嘉明. 一种微流控组合化学反应芯片. 中国, B01L3/00, CN103386338A. 2013.11.13. |
[43] |
ZHANG HAO, WANG JING-JING, FAN JIE, et al. Microfluidic chip-based analytical system for rapid screening of photocatalysts. Talanta, 2013, 116: 946-950.
DOI URL |
[44] | 钟澄, 宋志双, 胡文彬. 合成金属基粉体材料的装置及其高通量合成方法. 中国, B22F9/24, CN105935780B. 2018.05.04. |
[45] | 钟澄, 刘晓瑞, 刘杰, 等. 一种系统集成高通量制备和高通量电化学测试的方法. 中国, G01N27/26, CN111896595A. 2020.11.06. |
[46] | 钟澄, 刘杰, 邓意达, 等. 梯度加热的微流控合成材料装置. 中国, B01L3/00, CN109622087B. 2021.04.02. |
[47] | 钟澄, 刘杰, 胡文彬. 微流控高通量合成和电化学表征一体化装置. 中国, G01N27/48, CN109839418B. 2020.07.14. |
[48] |
HU YANG, LIU BIN, WU YATING, et al. Facile high throughput wet-chemical synthesis approach using a microfluidic-based composition and temperature controlling platform. Front. Chem., 2020, 8: 579828.
DOI URL |
[49] |
LEE BONGHYUN, LEE SANGJUN, JEONG HYUNG GON, et al. Solid-state combinatorial screening of (Sr,Ca,Ba,Mg)2Si5N8:Eu2+ phosphors. ACS Comb. Sci., 2011, 13(2): 154-158.
DOI URL |
[50] |
HE GANG, LIU GUANGHUA, YANG ZENGCHAO, et al. Preparation of YAG glass-ceramic by combustion synthesis under high gravity. Ceram. Int., 2014, 40(9): 15265-15271.
DOI URL |
[51] |
YANG ZENGCHAO, LIU GUANGHUA, LI JIANGTAO, et al. Preparation of transparent Y2O3-Al2O3-SiO2 glasses by high-gravity combustion synthesis with heating assistance. J. Am. Ceram. Soc., 2012, 95(6): 1799-1802.
DOI URL |
[52] |
LIU GUANGHUA, LI JIANGTAO, HE BIN. Melt-casting of Si-Al-Y-O glasses and glass-ceramics by combustion synthesis under high gravity. J. Non-cryst. Solids., 2011, 357(7): 1764-1767.
DOI URL |
[53] |
SHUANG SHUANG, LI HONGHUA, HE GANG, et al. High-throughput automatic batching equipment for solid state ceramic powders. Rev. Sci. Instrum., 2019, 90(8): 083904.
DOI URL |
[54] | 双爽, 李宏华, 贺刚 等. 一种高通量粉体的制备装置及其使用方法. 中国, B28B3/04, CN110434982A. 2019.11.12. |
[55] |
LI HONGHUA, HE GANG, LI YONG, et al. Combinatorial synthesis of multiple ZrxTi1-xC by electric field-assisted combustion synthesis. J. Eur. Ceram. Soc., 2021, 41(1): 1020-1024.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||