Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (7): 681-690.DOI: 10.15541/jim20160484
• Orginal Article • Previous Articles Next Articles
JIANG Jiu-Xin1,2, WU Yue1, HE Yao1, GAO Song1, ZHANG Chen1, SHEN Tong3, LIU Jia-Ning3,4
Received:
2016-08-29
Revised:
2016-10-29
Published:
2017-07-20
Online:
2017-06-23
About author:
JIANG Jiu-Xin. E-mail: jiuxinjiang@hotmail.com
Supported by:
CLC Number:
JIANG Jiu-Xin, WU Yue, HE Yao, GAO Song, ZHANG Chen, SHEN Tong, LIU Jia-Ning. Progress in Tuning of Metastable Vaterite Calcium Carbonate[J]. Journal of Inorganic Materials, 2017, 32(7): 681-690.
Fig. 1 (a) Vertical projection of vaterite showing orientation of carbonate group relative to calcium atoms[10]; (b) Structure of the vaterite unit cell[11]
Fig. 3 SEM images of CaCO3 particles in different concentration ratios between p-aminobenzene sulfonic acid anhydrous and l-Lys solutions [29] (a) 0.1 g/L:0.1 g/L; (b) 0.1 g/L:0.3 g/L; (c) 0.1 g/L:0.5 g/L; (d) 0.5 g/L:0.1 g/L; (e) High magnification of selective area of (d)
Fig. 4 SEM images of CaCO3 hollow spheres obtained in the presence of PEG10000-SDS[35](a) Low magnification image, (b) high and (c) middle magnification SEM images; and (d) TEM image of CaCO3 hollow spheres obtained in the presence of PEG2000-SDS
Fig. 5 SEM images of CaCO3 prepared at different surfactant concentrations [38](a) 0.1 mol/L; (b) Magnification of (a); (c) 0.07 mol/L; (d) 0.04 mol/L
Fig. 6 SEM images showing sponge-like vaterite spheroids prepared by evaporation[41] from water-in-oil supersaturated microemulsions with compositions of (a) octane︰SDS︰CaHCO3 =71︰4︰25(wt%); (b) octane︰dodecanol︰SDS︰CaHCO3 = 70.8︰0.7︰3.5︰25(wt%); (c) schematic diagram showing the mechanism for the formation of vaterite microsponges in water-in-oil microemulsions
Fig. 7 SEM images of CaCO3 where (a-c) and (d-f) with 10 mL and 20 mL of silk fibroin, respectively, affter being added Mg2+ at the concentration of (a) 10; (b) 20; (c) 50; (d) 10; (e) 20; (f) 50 mmol/L[42]
Fig. 11 Atomic structure of (a) calcite and (b) vaterite, (c) Ca2+ ions stacking in vaterite and the motion direction in the (0001) faces under agitation, and (d) Ca2+ ions stacking in the (0001) faces after motion[59]
[1] | CUI Z, CUI C, ZHU Y, et al.Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of fatty acids.Langmuir, 2011, 28(1): 314-320. |
[2] | LIU S. Stabilized Vaterite.U.S. Patent Application, US20030717 310. 2003.11.19. |
[3] | DEVENNEY M, FERNANDEZ M, MORGAN S.Non-cementitious Compositions Comprising Vaterite and Methods Thereof. U.S. Patent Application, US201313804558. 2013.3.14. |
[4] | TAS A.Use of vaterite and calcite in forming calcium phosphate cement scaffolds.Ceram. Eng. Sci. Proc., 2009, 28(9): 135-150. |
[5] | OHGUSHI H, OKUMURA M, YOSHIKAWA T, et al.Bone formation processin porous calcium carbonate and hydroxyapatite.J. Biomed. Mater. Res., 1992, 26(7): 885-895. |
[6] | BUKREEVA T, MARCHENKO I, BORODINA T, et al.Calcium carbonate and titanium dioxide particles as a basis for container fabrication for brain delivery of compounds.Dokl. Phys. Chem., 2011, 440(1): 165-167. |
[7] | LI Q, DING Y, LI F, et al.Solvothermal growth of vaterite in the presence of ethylene glycol, 1, 2-propanediol and glycerin. J. Cryst. Growth, 2002, 236(1): 357-362. |
[8] | FLATEN E, SEIERSTEN M, ANDREASSEN J.Polymorphism and morphology of calcium carbonate precipitated in mixed solvents of ethylene glycol and water.J. Cryst. Growth, 2009, 311(13): 3533-3538. |
[9] | DUPONT L, PORTEMER F.Synthesis and study of a well crystallized CaCO3 vaterite showing a new habitus.J. Mater. Chem., 1997, 7(5): 797-800. |
[10] | KAMHI S.On the structure of vaterite CaCO3.Acta Crystallogr., 1963, 16(8): 770-772. |
[11] | MEYER H.Struktur und fehlordnung des vaterits.Z. Kristallogr., 1969, 128(1-6): 183-212. |
[12] | DEMICHELIS R, RAITERI P, GALE J, et al.A new structural model for disorder in vaterite from first-principles calculations.CrystEngComm, 2012, 14(1): 44-47. |
[13] | DEMICHELIS R, RAITERI P, GALE J, et al.The multiple structures of vaterite.Cryst. Growth Des., 2013, 13(6): 2247-2251. |
[14] | NAKA K, TANAKA Y, CHUJO Y.Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: size control of spherical vaterite particles.Langmuir, 2002, 18(9): 3655-3658. |
[15] | IMAI H, TOCHIMOTO N, NISHINO Y, et al.Oriented nanocrystal mosaic in monodispersed CaCO3 microspheres with functional organic molecules.Cryst. Growth Des., 2012, 12(2): 876-882. |
[16] | YU S, CÖLFEN H, ANTONIETTI M. Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures.J. Phys. Chem. B, 2003, 107(30): 7396-7405. |
[17] | NEHRKE G, VAN CAPPELLEN P.Framboidal vaterite aggregates and their transformation into calcite: a morphological study.J. Cryst. Growth, 2006, 287(2): 528-530. |
[18] | CÖLFEN H, QI L. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer.Chem.-Eur. J., 2001, 7(1): 106-116. |
[19] | HU Q, ZHANG J, TENG H, et al.Growth process and crystallographic properties of ammonia-induced vaterite.Am. Mineral., 2012, 97(8/9): 1437-1445. |
[20] | FRICKE M, VOLKMER D, KRILL C, et al.Vaterite polymorph switching controlled by surface charge density of an amphiphilic dendron-calix [4] arene.Cryst. Growth Des., 2006, 6(5): 1120-1123. |
[21] | GEHRKE N, CÖLFEN H, PINNA N, et al. Superstructures of calcium carbonate crystals by oriented attachment.Cryst. Growth Des., 2005, 5(4): 1317-1319. |
[22] | QI L, LI J, MA J.Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers.Adv. Mater., 2002, 14(4): 300-303. |
[23] | MUGNAIOLI E, ANDRUSENKO I, SCHÜLER T, et al. Ab initio structure determination of vaterite by automated electron diffraction.Angew. Chem. Int. Ed., 2012, 51(28): 7041-7045. |
[24] | WEI H, MA N, SONG B, et al.Formation of multilayered vaterite via phase separation, crystalline transformation, and self-assembly of nanoparticles at the air/water interface.J. Phys. Chem. C, 2007, 111(15): 5628-5632. |
[25] | WEI H, SHEN Q, ZHAO Y, et al.Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite.J. Cryst. Growth, 2003, 250(3): 516-524. |
[26] | POLITI Y, ARAD T, KLEIN E, et al.Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.Science, 2004, 306(5699): 1161-1164. |
[27] | 章峻, 包富荣, 戴冬萍, 等. 马来酸酐 (MAH) 表面改性纳米碳酸钙粉体的制备及表面性能. 无机化学学报, 2007, 23(5): 822-826. |
[28] | KONTREC J, KRALJ D, BREČEVIĆ L, et al. Influence of some polysaccharides on the production of calcium carbonate filler particles.J. Cryst. Growth, 2008, 310(21): 4554-4560. |
[29] | ZHANG Q, REN L, SHENG Y, et al.Control of morphologies and polymorphs of CaCO3 via multi-additives system.Mater. Chem. Phys., 2010, 122(1): 156-163. |
[30] | 汪小红, 张群, 董晓庆, 等. 超声辅助的荔枝状球霰石的制备与表征. 人工晶体学报, 2013, 42(10): 2164-2169. |
[31] | YANG YA-NAN, ZHU XIAO-LI, KONG XIANG-ZHENG.Controls of crystal morphology, size and structure in spontaneous preparation of calcium carbonate.Journal of Inorganic Materials, 2013, 28(12): 1313-1320. |
[32] | RAMESH T, INCHARA S A, PALLAVI K.Para-amino benzoic acid-mediated synthesis of vaterite phase of calcium carbonate.J. Chem. Sci., 2015, 127(5): 843-848. |
[33] | 夏宏宇, 张群, 王刚, 等. 球形和橄榄形球霰石的简易制备研究. 人工晶体学报, 2015, 44(6): 1701-1706. |
[34] | ZOU JIAN-PENG, YANG HONG-ZHI, XIAO-PING, et al.Controllable fabrication of calcium carbonate hollow microspheres with micro-nano hierarchical structure.Journal of Inorganic Materials, 2016, 31(7): 711-718. |
[35] | JI X, LI G, HUANG X.The synthesis of hollow CaCO3 microspheres in mixed solutions of surfactant and polymer. Mater. Lett., 2008, 62(4): 751-754. |
[36] | 徐国峰, 王洁欣, 沈志刚, 等. 单分散纳米碳酸钙的制备和表征. 北京化工大学学报(自然科学版), 2009, 36(5): 27-30. |
[37] | KANG S, HIRASAWA I, KIM W, et al.Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT.J. Colloid. Interf. Sci. 2005, 288(2): 496-502. |
[38] | JIANG J, MA Y, ZHANG T, et al.Morphology and size control of calcium carbonate crystallized in a reverse micelle system with switchable surfactants.RSC Adv., 2015, 5: 80216-80219. |
[39] | 陈银霞, 纪献兵, 赵改青, 等. 低温溶剂热法合成圆饼状球霰石碳酸钙. 材料导报, 2010, 24(12): 99-102. |
[40] | 陈先勇, 唐琴, 刘代俊. 独特形貌碳酸钙的微波水热合成与表征. 功能材料, 2012, 43(9): 1109-1112. |
[41] | WALSH D, LEBEAU B, MANN S.Morphosynthesis of calcium carbonate (vaterite) microsponges.Adv. Mater., 1999, 11(4): 324-328. |
[42] | AN X, CAO C.Biomineralization of CaCO3 through the cooperative interactions between multiple additives and self-assembled monolayers.J. Phys. Chem. C, 2008, 112(16): 6526-6530. |
[43] | YANG B, NAN Z.Abnormal polymorph conversion of calcium carbonate from calcite to vaterite.Mater. Res. Bull., 2012, 47(3): 521-526. |
[44] | YANG D, YU K, AI Y, et al.The mineralization of electrospun chitosan/poly (vinyl alcohol) nanofibrous membranes.Carbohydr. Polym., 2011, 84(3): 990-996. |
[45] | RAUTARAY D, AHMAD A, SASTRY M.Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete.J. Am. Chem. Soc., 2003, 125(48): 14656-14657. |
[46] | BEUVIER T, CALVIGNAC B, DELCROIX G, et al.Synthesis of hollow vaterite CaCO3 microspheres in supercritical carbon dioxide medium. J. Mater. Chem., 2011, 21(26): 9757-9761. |
[47] | 潘晓芳, 王海水. 乙醇/水混合溶剂体系中碳酸钙晶体晶型和取向的控制. 无机化学学报, 2014, 30(6): 1312-1316. |
[48] | 韩金鑫, 连宾, 唐源, 等. 恶臭假单胞菌对碳酸钙的诱导矿化作用. 南京大学学报 (自然科学版), 2013, 49(6): 681-688. |
[49] | 马晓明, 杨媛媛, 张晓婷, 等. 大豆胰岛素指导下具有分级结构碳酸钙的仿生合成. 河南师范大学学报(自然科学版), 2014, 42(2): 64-68. |
[50] | 黄玉刚, 褚日环, 何明辉, 等. 富含羧基的多肽基双亲水杂化共聚物控制碳酸钙的形成. 中山大学学报(自然科学版), 2014, 53(3): 73-79. |
[51] | GUO Y, WANG F, ZHANG J, et al.Biomimetic synthesis of calcium carbonate with different morphologies under the direction of different amino acids.Res. Chem. Intermed., 2013, 39(6): 2407-2415. |
[52] | 任丽英, 张群, 朱万华, 等. 仿生合成碳酸钙微环. 人工晶体学报, 2015, 44(1): 250-255. |
[53] | LIU L, JIANG J, YU S.Polymorph selection and structure evolution of CaCO3 mesocrystals under control of poly (sodium 4-styrenesulfonate): synergetic effect of temperature and mixed solvent.Cryst. Growth Des., 2014, 14(11): 6048-6056. |
[54] | 陈晓东, 辛梅华, 李明春, 等. N-琥珀酰基-O-羟丙基磺酸壳聚糖仿生合成球霰石碳酸钙. 材料研究学报, 2016, 30(1): 31-37. |
[55] | 朱文杰, 蔡春华, 林嘉平. 碳酸钙在聚合物胶束控制下的仿生合成. 高分子学报, 2011, 4: 335-339. |
[56] | 汪玉瑛. 生物成因碳酸钙矿化机制的仿生实验研究. 合肥: 中国科学技术大学博士学位论文, 2015. |
[57] | 张群, 张清. 不同晶型碳酸钙的仿生矿化研究. 硅酸盐通报, 2014, 33(5): 1236-1240. |
[58] | JIANG J, YE J, ZHANG G, et al.Polymorph and morphology control of CaCO3 via temperature and PEG during the decomposition of Ca(HCO3)2.J. Am. Ceram. Soc., 2012, 95(12): 3735-3738. |
[59] | JIANG J, ZHANG Y, XU D, et al.Can agitation determine the polymorphs of calcium carbonate during the decomposition of calcium bicarbonate?CrystEngComm, 2014, 16(24): 5221-5226. |
[60] | ZENG H, YAN Z, JIAO M, et al.A novel method for preparing calcium carbonate particles: thermal decomposition from calcium hydrogen carbonate solution.Key Eng. Mater., 2016, 697: 113-118. |
[61] | TRUSHINA D, BUKREEVA T, KOVALCHUK M, et al.CaCO3 vaterite microparticles for biomedical and personal care applications.Mater. Sci. Eng., C, 2014, 45: 644-658. |
[62] | RODRIGUEZ-NAVARRO C, JIMENEZ-LOPEZ C, RODRIGUEZ-NAVARRO A, et al.Bacterially mediated mineralization of vaterite.Geochim. Cosmochim. Acta, 2007, 71(5): 1197-1213. |
[63] | WANG X, WU C, TAO K, et al.Influence of ovalbumin on CaCO3 precipitation during in vitro biomineralization.J. Phys. Chem. B, 2010, 114(16): 5301-5308. |
[64] | DONNERS J, HEYWOOD B, MEIJER E, et al.Control over calcium carbonate phase formation by dendrimer/surfactant templates.Chem.-Eur. J., 2002, 8(11): 2561-2567. |
[65] | PARAKHONSKIY B, HAASE A, ANTOLINI R.Sub-micrometer vaterite containers: synthesis, substance loading, and release.Angew. Chem., Int. Edit., 2012, 51(5): 1195-1197. |
[66] | SAND K, RODRIGUEZ-BLANCO J, MAKOVICKY E, et al.Crystallization of CaCO3 in water-alcohol mixtures: spherulitic growth, polymorph stabilization, and morphology change.Cryst. Growth Des., 2012, 12(2): 842-853. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||