Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (10): 1023-1030.DOI: 10.15541/jim20160131
• Orginal Article • Previous Articles Next Articles
ZHOU Jia-Jia, QIU Jian-Rong
Received:
2016-03-08
Revised:
2016-04-14
Published:
2016-10-20
Online:
2016-09-23
About author:
ZHOU Jia-Jia. E-mail: zhoujiajia@zju.edu.cn
Supported by:
CLC Number:
ZHOU Jia-Jia, QIU Jian-Rong. Upconversion Spectroscopic Investigation of Single Nanoparticles[J]. Journal of Inorganic Materials, 2016, 31(10): 1023-1030.
Fig. 2 Schematic experimental configuration for capturing UC luminescence of nanoparticles using a suspended-core microstructured optical-fiber dip sensor[9]
UCNPs | Particle size/nm | Monitoring wavelength/nm | Assessing mode | Power density /(W·cm-2) | Time range /min | Ref. |
---|---|---|---|---|---|---|
β-NaYF4: Yb3+, Er3+ | ~27 | 550/650 | photostability | 5 ×106 | 60 | [24] |
NaGdF4: Yb3+, Er3+@NaGdF4 | ~40 | 550/650 | photostability | 150 | 240 | [23] |
YVO4: Yb3+, Er3+ | ~39 | 520/550/650 | photostability | 8×103 | 8 | [41] |
NaYF4 : Yb3+, Ho3+, Tm3+@NaYF4 | ~22 | 450/475/545/645 | photostability | 8×106 | 360 | [42] |
β-NaYF4: Yb3+/Er3+ | ~10 | 550/650 | photostability | 106 | 60 | [29] |
β-NaGdF4: Yb3+, Er3+@NaYF4 | ~20 | 520/550/650 | brightness | / | / | [43] |
β-NaGdF4: Yb3+, Er3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~39 | 550 | photostability | / | 15 | [14] |
β-NaGdF4: Yb3+, Tm3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~38 | 480 | ||||
NaYbF4: Er3+@NaYF4@SiO2@rhodamine B isothiocyanate-doped SiO2 | ~24 | 650 |
Table 1 Photostability and brightness assessment of single UCNPs
UCNPs | Particle size/nm | Monitoring wavelength/nm | Assessing mode | Power density /(W·cm-2) | Time range /min | Ref. |
---|---|---|---|---|---|---|
β-NaYF4: Yb3+, Er3+ | ~27 | 550/650 | photostability | 5 ×106 | 60 | [24] |
NaGdF4: Yb3+, Er3+@NaGdF4 | ~40 | 550/650 | photostability | 150 | 240 | [23] |
YVO4: Yb3+, Er3+ | ~39 | 520/550/650 | photostability | 8×103 | 8 | [41] |
NaYF4 : Yb3+, Ho3+, Tm3+@NaYF4 | ~22 | 450/475/545/645 | photostability | 8×106 | 360 | [42] |
β-NaYF4: Yb3+/Er3+ | ~10 | 550/650 | photostability | 106 | 60 | [29] |
β-NaGdF4: Yb3+, Er3+@NaYF4 | ~20 | 520/550/650 | brightness | / | / | [43] |
β-NaGdF4: Yb3+, Er3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~39 | 550 | photostability | / | 15 | [14] |
β-NaGdF4: Yb3+, Tm3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~38 | 480 | ||||
NaYbF4: Er3+@NaYF4@SiO2@rhodamine B isothiocyanate-doped SiO2 | ~24 | 650 |
Fig. 4 (a) Integrated upconrersion luminescence intensity (~400- 850 nm) as a function of excitation irradiance for a series of Tm3+-doped nanoparticles. (b) Luminescence intensity of single 8 nm UCNPs with 20% (blue circles) and 2% (red circles) Er3+, each with 20%Yb3+, plotted as a function of excitation intensity. Confocal luminescence images taken at points shown in (b) of single UCNPs containing a mixture of 2% and 20% Er3+. (c) Emission spectra of single β-NaYF4: 20% Yb3+-2% Tm3+ nanoparticle excited with 980 nm laser illumination at the power density of ~1.1×107 W/cm2[13, 30, 44]
Fig. 5 (a-d) Emission spectra of UC from β-NaYF4: Tm3+-Yb3+ single micro-rod in the transitions of Tm3+: (a) 1G4→3F4, (b) 3F3→3H6, 1D2→3F3, (c) 1G4→3H5, (d) 3H4→3H6, respectively. (e-h) The dependence of the corresponding spectra on emission polarization angle (φem). (i, j) UC luminescence spectra of a single nanodisk, whose a axis or c axis is parallel to horizontal plane, recorded at excitation polarization angles varying from 0° to 360°, with no polarizer placed in the detection part. (k) Emission spectra from a single NaYF4: Er3+, Yb3+ UCNR immobilized on a surface for two perpendicular emission polarization angles. Purple (blue) line represents recovered emission parallel (perpendicular) to the optical axis of the NaYF4: Er3+, Yb3+ UCNR. Inset represents these two different polarizations of the electric field that gives the two distinct spectra. (l) Two dimensional map represents emission intensity of red band as a function of emission polarization angle[27, 31]
Fig. 7 (a) AFM image showing the nanoassembly approach: The 60 nm gold nanosphere is attached to the UCNPs with the help of the AFM tip. The yellow arrow indicates the polarization axis of the excitation light. (b) Upconversion emission spectra of the nanoparticle without (violet curve) and with (blue curve) the gold nanosphere in close vicinity. (c) Rise (upper) and decay times (lower) of the green (left) and red (right) emission with the color code as in part (b). (d) Schematic of the tip-enhancement of a single Upconversion nanoparticle. (e) Upconversion emission spectra with retracted and approached tip, respectively. (f) Decay curves for red emission detected with and without tip at 660 nm[26, 55]
[1] | AUZEL F.Upconversion and anti-Stokes processes with f and d ions in solids.Chem. Rev. , 2004, 104(1): 139-173. |
[2] | WANG X, ZHUANG J, PENG Q, et al.A general strategy for nanocrystal synthesis.Nature, 2005, 437(7055): 121-124. |
[3] | WANG F, HAN Y, LIM C S, et al.Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping.Nature, 2010, 463(7284): 1061-1065. |
[4] | ZHANG F, LI J, SHAN J, et al.Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties.Chem-Eur. J., 2009, 15(41): 11010-11019. |
[5] | YI G S, CHOW G M.Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence.Adv. Funct. Mater., 2006, 16(18): 2324-2329. |
[6] | LIU D, XU X, DU Y, et al.Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals.Nat. Commun. , 2016, 7: 10254. |
[7] | ZHOU B, SHI B, JIN D, et al.Controlling upconversion nanocrystals for emerging applications.Nat. Nanotechnol., 2015, 10(11): 924-936. |
[8] | WANG F, DENG R, WANG J, et al.Tuning upconversion through energy migration in core-shell nanoparticles.Nat. Mater., 2011, 10(12): 968-973. |
[9] | ZHAO J B, JIN D Y, SCHARTNER E P, et al.Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence.Nat. Nanotechnol., 2013, 8(10): 729-734. |
[10] | LU Y, ZHAO J, ZHANG R, et al.Tunable lifetime multiplexing using luminescent nanocrystals.Nat. Photonics, 2014, 8(1): 33-37. |
[11] | LU Y, LU J, ZHAO J, et al.On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays.Nat. Commun., 2014, 5: 3741. |
[12] | WANG J, DENG R, MACDONALD M A, et al.Enhancing multiphoton upconversion through energy clustering at sublattice level.Nat. Mater. , 2014, 13(2): 157-162. |
[13] | GARGAS D J, CHAN E M, OSTROWSKI A D, et al.Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging.Nat. Nanotechnol., 2014, 9(4): 300-305. |
[14] | ZHOU L, WANG R, YAO C, et al.Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers.Nat. Commun., 2015, 6: 6938. |
[15] | FERNEE M J, TAMARAT P, LOUNIS B.Spectroscopy of single nanocrystals.Chem. Soc. Rev. , 2014, 43(4): 1311-1337. |
[16] | SONNTAG M D, KLINGSPORN J M, ZRIMSEK A B, et al.Molecular plasmonics for nanoscale spectroscopy.Chem. Soc. Rev., 2014, 43(4): 1230-1247. |
[17] | CUI J, BEYLER A P, BISCHOF T S, et al.Deconstructing the photon stream from single nanocrystals: from binning to correlation.Chem. Soc. Rev., 2014, 43(4): 1287-1310. |
[18] | EMPEDOCLES S A, NEUHAUSER R, SHIMIZU K, et al.Photoluminescence from single semiconductor nanostructures.Adv. Mater., 1999, 11(15): 1243-1256. |
[19] | BLANTON S A, HINES M A, GUYOT-SIONNEST P.Photoluminescence wandering in single CdSe nanocrystals.Appl. Phys. Lett., 1996, 69(25): 3905-3907. |
[20] | NIRMAL M, DABBOUSI B O, BAWENDI M G, et al.Fluorescence intermittency in single cadmium selenide nanocrystals.Nature, 1996, 383(6603): 802-804. |
[21] | EMPEDOCLES S, BAWENDI M.Quantum-confined stark effect in single CdSe nanocrystallite quantum dots.Science, 1997, 278(5346): 2114-2117. |
[22] | PARK Y I, LEE K T, SUH Y D, et al.Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.Chem. Soc. Rev., 2014, 44(6): 1302-1317. |
[23] | PARK Y I, KIM J H, LEE K T, et al.Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent.Adv. Mater., 2009, 21(44): 4467-4471. |
[24] | WU S W, HAN G, MILLIRON D J, et al.Non-blinking and photostable upconverted luminescence from single lanthanide- doped nanocrystals.Proc. Natl. Acad. Sci. USA, 2009, 106(27): 10917-10921. |
[25] | SCHIETINGER S, MENEZES L D, LAURITZEN B, et al.Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals.Nano Lett., 2009, 9(6): 2477-2481. |
[26] | SCHIETINGER S, AICHELE T, WANG H Q, et al.Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals.Nano Lett., 2010, 10(1): 134-138. |
[27] | ZHOU J J, CHEN G X, WU E, et al.Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod.Nano Lett., 2013, 13(5): 2241-2246. |
[28] | KOLESOV R, XIA K, REUTER R, et al.Optical detection of a single rare-earth ion in a crystal.Nat. Commun., 2012, 3: 1029. |
[29] | OSTROWSKI A D, CHAN E M, GARGAS D J, et al.Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals.ACS Nano, 2012, 6(3): 2686-2692. |
[30] | ZHOU J J, CHEN G X, ZHU Y B, et al.Intense multiphoton upconversion of Yb3+-Tm3+ doped beta-NaYF4 individual nanocrystals by saturation excitation. J. Mater. Chem. C, 2015, 3(2): 364-369. |
[31] | CHEN P, SONG M, WU E, et al.Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates.Nanoscale, 2015, 7(15): 6462-6466. |
[32] | SCHARTNER E P, JIN D Y, EBENDORFF-HEIDEPRIEM H, et al.Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization.Nanoscale, 2012, 4(23): 7448-7451. |
[33] | SCHARTNER E P, JIN D, EBENDORFF-HEIDEPRIEM H, et al.Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. Third Asia Pacific Optical Sensors Conference, 2012, 8351. |
[34] | SCHARTNER E P, JIN D Y, ZHAO J B, et al.Sensitive Detection of NaYF4: Yb/Tm Nanoparticles Using Suspended Core Microstructured Optical Fibers. Colloidal Nanocrystals for Biomedical Applications Viii, 2013: 8595. |
[35] | RODRIGUEZ-SEVILLA P, RODRIGUEZ-RODRIGUEZ H, PEDRONI M, et al.Assessing single upconverting nanoparticle luminescence by optical tweezers.Nano Lett. , 2015, 15(8): 5068-5074. |
[36] | RODRIGUEZ-SEVILLA P, LABRADOR-PAEZ L, WAWRZYN CZYK D, et al.Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy.Nanoscale, 2015, 8(1): 300-308. |
[37] | DICKSON R M, CUBITT A B, TSIEN R Y, et al.On/off blinking and switching behaviour of single molecules of green fluorescent protein.Nature, 1997, 388(6640): 355-358. |
[38] | NIRMAL M, DABBOUSI B, BAWENDI M, et al.Fluorescence intermittency in single cadmium selenide nanocrystals.Nature, 1996, 383(6603): 802-804. |
[39] | GALLAND C, GHOSH Y, STEINBRUCK A, et al.Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots.Nature, 2011, 479(7372): 203-207. |
[40] | BARNES M, MEHTA A, THUNDAT T, et al.On-off blinking and multiple bright states of single europium ions in Eu3+: Y2O3 nanocrystals.J. Phys. Chem. B, 2000, 104(26): 6099-6102. |
[41] | MIALON G, TURKCAN S, DANTELLE G, et al.High up-conversion efficiency of YVO4: Yb, Er nanoparticles in water down to the single-particle level.J. Phys. Chem. C, 2010, 114(51): 22449-22454. |
[42] | ZHANG F, SHI Q, ZHANG Y, et al.Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding.Adv. Mater., 2011, 23(33): 3775-3779. |
[43] | LI X, WANG R, ZHANG F, et al.Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency.Nano Lett., 2014, 14(6): 3634-3639. |
[44] | ZHAO J, JIN D, SCHARTNER E P, et al.Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence.Nat. Nanotechnol., 2013, 8(10): 729-734. |
[45] | ZHANG H, LI Y, LIN Y, et al.Composition tuning the upconversion emission in NaYF4: Yb/Tm hexaplate nanocrystals.Nanoscale, 2011, 3(3): 963-966. |
[46] | YIN A X, ZHANG Y W, SUN L D, et al.Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4 : Yb, Tm nanocrystals.Nanoscale, 2010, 2(6): 953-959. |
[47] | MAHALINGAM V, VETRONE F, NACCACHE R, et al.Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation.Adv. Mater., 2009, 21(40): 4025-4028. |
[48] | KR MER K W, BINER D, FREI G, et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors.Chemistry of Materials, 2004, 16(7): 1244-1251. |
[49] | LIANG L, WU H, HU H, et al.Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1-xYbxF4: Ln3+(Ln3+=Er3+ or Tm3+).J. Alloys Compd., 2004, 368(1): 94-100. |
[50] | ZHANG Y H, ZHANG L X, DENG R R, et al.Multicolor barcoding in a single upconversion crystal.J. Am. Chem. Soc., 2014, 136(13): 4893-4896. |
[51] | GLASS A M, LIAO P F, BERGMAN J G, et al.Interaction of metal particles with adsorbed dye molecules: absorption and luminescence.Opt. Lett., 1980, 5(9): 368-370. |
[52] | LAKOWICZ J R.Radiative decay engineering: biophysical and biomedical applications.Anal. Biochem., 2001, 298(1): 1-24. |
[53] | DULKEITH E, MORTEANI A C, NIEDEREICHHOLZ T, et al.Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects.Phys. Rev. Lett., 2002, 89(20): 203002. |
[54] | SABOKTAKIN M, YE X, OH S J, et al.Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation.ACS Nano, 2012, 6(10): 8758-8766. |
[55] | MAUSER N, PIATKOWSKI D, MANCABELLI T, et al.Tip-enhancement of up-conversion photoluminescence from rare- earth ion doped nanocrystals.ACS Nano, 2015, 9(4): 3617-3626. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||