Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (10): 1023-1030.DOI: 10.15541/jim20160131
• Orginal Article • Previous Articles Next Articles
ZHOU Jia-Jia, QIU Jian-Rong
Received:
2016-03-08
Revised:
2016-04-14
Published:
2016-10-20
Online:
2016-09-23
About author:
ZHOU Jia-Jia. E-mail: zhoujiajia@zju.edu.cn
Supported by:
CLC Number:
ZHOU Jia-Jia, QIU Jian-Rong. Upconversion Spectroscopic Investigation of Single Nanoparticles[J]. Journal of Inorganic Materials, 2016, 31(10): 1023-1030.
Fig. 2 Schematic experimental configuration for capturing UC luminescence of nanoparticles using a suspended-core microstructured optical-fiber dip sensor[9]
UCNPs | Particle size/nm | Monitoring wavelength/nm | Assessing mode | Power density /(W·cm-2) | Time range /min | Ref. |
---|---|---|---|---|---|---|
β-NaYF4: Yb3+, Er3+ | ~27 | 550/650 | photostability | 5 ×106 | 60 | [24] |
NaGdF4: Yb3+, Er3+@NaGdF4 | ~40 | 550/650 | photostability | 150 | 240 | [23] |
YVO4: Yb3+, Er3+ | ~39 | 520/550/650 | photostability | 8×103 | 8 | [41] |
NaYF4 : Yb3+, Ho3+, Tm3+@NaYF4 | ~22 | 450/475/545/645 | photostability | 8×106 | 360 | [42] |
β-NaYF4: Yb3+/Er3+ | ~10 | 550/650 | photostability | 106 | 60 | [29] |
β-NaGdF4: Yb3+, Er3+@NaYF4 | ~20 | 520/550/650 | brightness | / | / | [43] |
β-NaGdF4: Yb3+, Er3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~39 | 550 | photostability | / | 15 | [14] |
β-NaGdF4: Yb3+, Tm3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~38 | 480 | ||||
NaYbF4: Er3+@NaYF4@SiO2@rhodamine B isothiocyanate-doped SiO2 | ~24 | 650 |
Table 1 Photostability and brightness assessment of single UCNPs
UCNPs | Particle size/nm | Monitoring wavelength/nm | Assessing mode | Power density /(W·cm-2) | Time range /min | Ref. |
---|---|---|---|---|---|---|
β-NaYF4: Yb3+, Er3+ | ~27 | 550/650 | photostability | 5 ×106 | 60 | [24] |
NaGdF4: Yb3+, Er3+@NaGdF4 | ~40 | 550/650 | photostability | 150 | 240 | [23] |
YVO4: Yb3+, Er3+ | ~39 | 520/550/650 | photostability | 8×103 | 8 | [41] |
NaYF4 : Yb3+, Ho3+, Tm3+@NaYF4 | ~22 | 450/475/545/645 | photostability | 8×106 | 360 | [42] |
β-NaYF4: Yb3+/Er3+ | ~10 | 550/650 | photostability | 106 | 60 | [29] |
β-NaGdF4: Yb3+, Er3+@NaYF4 | ~20 | 520/550/650 | brightness | / | / | [43] |
β-NaGdF4: Yb3+, Er3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~39 | 550 | photostability | / | 15 | [14] |
β-NaGdF4: Yb3+, Tm3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~38 | 480 | ||||
NaYbF4: Er3+@NaYF4@SiO2@rhodamine B isothiocyanate-doped SiO2 | ~24 | 650 |
Fig. 4 (a) Integrated upconrersion luminescence intensity (~400- 850 nm) as a function of excitation irradiance for a series of Tm3+-doped nanoparticles. (b) Luminescence intensity of single 8 nm UCNPs with 20% (blue circles) and 2% (red circles) Er3+, each with 20%Yb3+, plotted as a function of excitation intensity. Confocal luminescence images taken at points shown in (b) of single UCNPs containing a mixture of 2% and 20% Er3+. (c) Emission spectra of single β-NaYF4: 20% Yb3+-2% Tm3+ nanoparticle excited with 980 nm laser illumination at the power density of ~1.1×107 W/cm2[13, 30, 44]
Fig. 5 (a-d) Emission spectra of UC from β-NaYF4: Tm3+-Yb3+ single micro-rod in the transitions of Tm3+: (a) 1G4→3F4, (b) 3F3→3H6, 1D2→3F3, (c) 1G4→3H5, (d) 3H4→3H6, respectively. (e-h) The dependence of the corresponding spectra on emission polarization angle (φem). (i, j) UC luminescence spectra of a single nanodisk, whose a axis or c axis is parallel to horizontal plane, recorded at excitation polarization angles varying from 0° to 360°, with no polarizer placed in the detection part. (k) Emission spectra from a single NaYF4: Er3+, Yb3+ UCNR immobilized on a surface for two perpendicular emission polarization angles. Purple (blue) line represents recovered emission parallel (perpendicular) to the optical axis of the NaYF4: Er3+, Yb3+ UCNR. Inset represents these two different polarizations of the electric field that gives the two distinct spectra. (l) Two dimensional map represents emission intensity of red band as a function of emission polarization angle[27, 31]
Fig. 7 (a) AFM image showing the nanoassembly approach: The 60 nm gold nanosphere is attached to the UCNPs with the help of the AFM tip. The yellow arrow indicates the polarization axis of the excitation light. (b) Upconversion emission spectra of the nanoparticle without (violet curve) and with (blue curve) the gold nanosphere in close vicinity. (c) Rise (upper) and decay times (lower) of the green (left) and red (right) emission with the color code as in part (b). (d) Schematic of the tip-enhancement of a single Upconversion nanoparticle. (e) Upconversion emission spectra with retracted and approached tip, respectively. (f) Decay curves for red emission detected with and without tip at 660 nm[26, 55]
[1] | AUZEL F.Upconversion and anti-Stokes processes with f and d ions in solids.Chem. Rev. , 2004, 104(1): 139-173. |
[2] | WANG X, ZHUANG J, PENG Q, et al.A general strategy for nanocrystal synthesis.Nature, 2005, 437(7055): 121-124. |
[3] | WANG F, HAN Y, LIM C S, et al.Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping.Nature, 2010, 463(7284): 1061-1065. |
[4] | ZHANG F, LI J, SHAN J, et al.Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties.Chem-Eur. J., 2009, 15(41): 11010-11019. |
[5] | YI G S, CHOW G M.Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence.Adv. Funct. Mater., 2006, 16(18): 2324-2329. |
[6] | LIU D, XU X, DU Y, et al.Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals.Nat. Commun. , 2016, 7: 10254. |
[7] | ZHOU B, SHI B, JIN D, et al.Controlling upconversion nanocrystals for emerging applications.Nat. Nanotechnol., 2015, 10(11): 924-936. |
[8] | WANG F, DENG R, WANG J, et al.Tuning upconversion through energy migration in core-shell nanoparticles.Nat. Mater., 2011, 10(12): 968-973. |
[9] | ZHAO J B, JIN D Y, SCHARTNER E P, et al.Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence.Nat. Nanotechnol., 2013, 8(10): 729-734. |
[10] | LU Y, ZHAO J, ZHANG R, et al.Tunable lifetime multiplexing using luminescent nanocrystals.Nat. Photonics, 2014, 8(1): 33-37. |
[11] | LU Y, LU J, ZHAO J, et al.On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays.Nat. Commun., 2014, 5: 3741. |
[12] | WANG J, DENG R, MACDONALD M A, et al.Enhancing multiphoton upconversion through energy clustering at sublattice level.Nat. Mater. , 2014, 13(2): 157-162. |
[13] | GARGAS D J, CHAN E M, OSTROWSKI A D, et al.Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging.Nat. Nanotechnol., 2014, 9(4): 300-305. |
[14] | ZHOU L, WANG R, YAO C, et al.Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers.Nat. Commun., 2015, 6: 6938. |
[15] | FERNEE M J, TAMARAT P, LOUNIS B.Spectroscopy of single nanocrystals.Chem. Soc. Rev. , 2014, 43(4): 1311-1337. |
[16] | SONNTAG M D, KLINGSPORN J M, ZRIMSEK A B, et al.Molecular plasmonics for nanoscale spectroscopy.Chem. Soc. Rev., 2014, 43(4): 1230-1247. |
[17] | CUI J, BEYLER A P, BISCHOF T S, et al.Deconstructing the photon stream from single nanocrystals: from binning to correlation.Chem. Soc. Rev., 2014, 43(4): 1287-1310. |
[18] | EMPEDOCLES S A, NEUHAUSER R, SHIMIZU K, et al.Photoluminescence from single semiconductor nanostructures.Adv. Mater., 1999, 11(15): 1243-1256. |
[19] | BLANTON S A, HINES M A, GUYOT-SIONNEST P.Photoluminescence wandering in single CdSe nanocrystals.Appl. Phys. Lett., 1996, 69(25): 3905-3907. |
[20] | NIRMAL M, DABBOUSI B O, BAWENDI M G, et al.Fluorescence intermittency in single cadmium selenide nanocrystals.Nature, 1996, 383(6603): 802-804. |
[21] | EMPEDOCLES S, BAWENDI M.Quantum-confined stark effect in single CdSe nanocrystallite quantum dots.Science, 1997, 278(5346): 2114-2117. |
[22] | PARK Y I, LEE K T, SUH Y D, et al.Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.Chem. Soc. Rev., 2014, 44(6): 1302-1317. |
[23] | PARK Y I, KIM J H, LEE K T, et al.Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent.Adv. Mater., 2009, 21(44): 4467-4471. |
[24] | WU S W, HAN G, MILLIRON D J, et al.Non-blinking and photostable upconverted luminescence from single lanthanide- doped nanocrystals.Proc. Natl. Acad. Sci. USA, 2009, 106(27): 10917-10921. |
[25] | SCHIETINGER S, MENEZES L D, LAURITZEN B, et al.Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals.Nano Lett., 2009, 9(6): 2477-2481. |
[26] | SCHIETINGER S, AICHELE T, WANG H Q, et al.Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals.Nano Lett., 2010, 10(1): 134-138. |
[27] | ZHOU J J, CHEN G X, WU E, et al.Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod.Nano Lett., 2013, 13(5): 2241-2246. |
[28] | KOLESOV R, XIA K, REUTER R, et al.Optical detection of a single rare-earth ion in a crystal.Nat. Commun., 2012, 3: 1029. |
[29] | OSTROWSKI A D, CHAN E M, GARGAS D J, et al.Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals.ACS Nano, 2012, 6(3): 2686-2692. |
[30] | ZHOU J J, CHEN G X, ZHU Y B, et al.Intense multiphoton upconversion of Yb3+-Tm3+ doped beta-NaYF4 individual nanocrystals by saturation excitation. J. Mater. Chem. C, 2015, 3(2): 364-369. |
[31] | CHEN P, SONG M, WU E, et al.Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates.Nanoscale, 2015, 7(15): 6462-6466. |
[32] | SCHARTNER E P, JIN D Y, EBENDORFF-HEIDEPRIEM H, et al.Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization.Nanoscale, 2012, 4(23): 7448-7451. |
[33] | SCHARTNER E P, JIN D, EBENDORFF-HEIDEPRIEM H, et al.Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. Third Asia Pacific Optical Sensors Conference, 2012, 8351. |
[34] | SCHARTNER E P, JIN D Y, ZHAO J B, et al.Sensitive Detection of NaYF4: Yb/Tm Nanoparticles Using Suspended Core Microstructured Optical Fibers. Colloidal Nanocrystals for Biomedical Applications Viii, 2013: 8595. |
[35] | RODRIGUEZ-SEVILLA P, RODRIGUEZ-RODRIGUEZ H, PEDRONI M, et al.Assessing single upconverting nanoparticle luminescence by optical tweezers.Nano Lett. , 2015, 15(8): 5068-5074. |
[36] | RODRIGUEZ-SEVILLA P, LABRADOR-PAEZ L, WAWRZYN CZYK D, et al.Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy.Nanoscale, 2015, 8(1): 300-308. |
[37] | DICKSON R M, CUBITT A B, TSIEN R Y, et al.On/off blinking and switching behaviour of single molecules of green fluorescent protein.Nature, 1997, 388(6640): 355-358. |
[38] | NIRMAL M, DABBOUSI B, BAWENDI M, et al.Fluorescence intermittency in single cadmium selenide nanocrystals.Nature, 1996, 383(6603): 802-804. |
[39] | GALLAND C, GHOSH Y, STEINBRUCK A, et al.Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots.Nature, 2011, 479(7372): 203-207. |
[40] | BARNES M, MEHTA A, THUNDAT T, et al.On-off blinking and multiple bright states of single europium ions in Eu3+: Y2O3 nanocrystals.J. Phys. Chem. B, 2000, 104(26): 6099-6102. |
[41] | MIALON G, TURKCAN S, DANTELLE G, et al.High up-conversion efficiency of YVO4: Yb, Er nanoparticles in water down to the single-particle level.J. Phys. Chem. C, 2010, 114(51): 22449-22454. |
[42] | ZHANG F, SHI Q, ZHANG Y, et al.Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding.Adv. Mater., 2011, 23(33): 3775-3779. |
[43] | LI X, WANG R, ZHANG F, et al.Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency.Nano Lett., 2014, 14(6): 3634-3639. |
[44] | ZHAO J, JIN D, SCHARTNER E P, et al.Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence.Nat. Nanotechnol., 2013, 8(10): 729-734. |
[45] | ZHANG H, LI Y, LIN Y, et al.Composition tuning the upconversion emission in NaYF4: Yb/Tm hexaplate nanocrystals.Nanoscale, 2011, 3(3): 963-966. |
[46] | YIN A X, ZHANG Y W, SUN L D, et al.Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4 : Yb, Tm nanocrystals.Nanoscale, 2010, 2(6): 953-959. |
[47] | MAHALINGAM V, VETRONE F, NACCACHE R, et al.Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation.Adv. Mater., 2009, 21(40): 4025-4028. |
[48] | KR MER K W, BINER D, FREI G, et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors.Chemistry of Materials, 2004, 16(7): 1244-1251. |
[49] | LIANG L, WU H, HU H, et al.Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1-xYbxF4: Ln3+(Ln3+=Er3+ or Tm3+).J. Alloys Compd., 2004, 368(1): 94-100. |
[50] | ZHANG Y H, ZHANG L X, DENG R R, et al.Multicolor barcoding in a single upconversion crystal.J. Am. Chem. Soc., 2014, 136(13): 4893-4896. |
[51] | GLASS A M, LIAO P F, BERGMAN J G, et al.Interaction of metal particles with adsorbed dye molecules: absorption and luminescence.Opt. Lett., 1980, 5(9): 368-370. |
[52] | LAKOWICZ J R.Radiative decay engineering: biophysical and biomedical applications.Anal. Biochem., 2001, 298(1): 1-24. |
[53] | DULKEITH E, MORTEANI A C, NIEDEREICHHOLZ T, et al.Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects.Phys. Rev. Lett., 2002, 89(20): 203002. |
[54] | SABOKTAKIN M, YE X, OH S J, et al.Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation.ACS Nano, 2012, 6(10): 8758-8766. |
[55] | MAUSER N, PIATKOWSKI D, MANCABELLI T, et al.Tip-enhancement of up-conversion photoluminescence from rare- earth ion doped nanocrystals.ACS Nano, 2015, 9(4): 3617-3626. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | WU Lukang, FU Zhengqian, YU Ziyi, YANG Jun, ZHOU Bin, CHEN Xuefeng, XU Fangfang. Application of Electron Energy-loss Spectroscopy to BaTiO3 Multi-layer Ceramic Capacitors [J]. Journal of Inorganic Materials, 2025, 40(6): 683-689. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||