Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (9): 897-905.DOI: 10.15541/jim20150123
• Orginal Article • Next Articles
ZHAI Ying-Jiao1, LI Jin-Hua1, CHU Xue-Ying1, XU Ming-Ze1, LI Xue1,2, FANG Xuan1,3, WEI Zhi-Peng3, WANG Xiao-Hua3
Received:
2015-03-11
Revised:
2015-04-24
Published:
2015-09-20
Online:
2015-08-19
About author:
ZHAI Ying-Jiao. E-mail: zhaiyingjiao0613@sina.com
Supported by:
CLC Number:
ZHAI Ying-Jiao, LI Jin-Hua, CHU Xue-Ying, XU Ming-Ze, LI Xue, FANG Xuan, WEI Zhi-Peng, WANG Xiao-Hua. Preparation and Application of Molybdenum Disulfide Nanostructures[J]. Journal of Inorganic Materials, 2015, 30(9): 897-905.
Fig. 2 (a) SEM images of a hollow MoS2 micro@nano- spheres[5]; (b) Rose-petal-shaped MoS2 hierarchical nanostructures[6]; (c) Core-shell MoO3-MoS2 nanowires[7]
Fig. 5 (a) Experimental setup of the chemically exfoliated MoS2 system[22]; (b) Schematic illustration of experimental setup for electrochemical exfoliation of bulk MoS2 crystal[23]; (c) AFM image of single-layer MoS2[24]; (d) Schematic representation of the synthesis procedure to obtain MoS2 quantum dots interspersed in MoS2 nanosheets[25]
Fig. 6 (a) Electrochemical/chemical method for synthesizing 2H-MoS2 nanoribbons[27] and (b) synthesis procedure and structural model for double-gyroid MoS2[28]
Fig. 8 (a) UV-Vis absorption spectra of a MB solution at room temperature in the presence of MoS2@SnO2 nanoflowers[37], (b) UV-Vis absorption spectra of MB solution in the presence of MoS2@ZnO nano-heterojunctions[38]
Fig. 9 (a) Schematic illustration of a MoS2/graphene heterojunction device[40] and (b) three-dimensional schematic view of the single-layer MoS2 photodetector[41]
Fig. 11 (a) Schematic illustration of colorimetric detection of glucose by using glucose oxidase (GOx) and MoS2 nanosheet[46], (b) schematic illustration of MoS2-IO-PEG in vivo photothermal therapy[47] and (c) schematic illustration of detection of DNA on MoS2-thionin electrochemical sensors[48]
Fig. 12 (a) Nyquist plots of the 3D hierarchical MoS2/PANI and MoS2/C nanoflowers[52], and (b) nyquist plots of the commercial MoS2 and the synthesized MoS2/OLC nano-urchins[53]The inset in (b) is the applied equivalent circuit
[1] | CONLEY H J, WANG B, ZIEGLER J I, et al.Bandgap engineering of strained monolayer and bilayer MoS2.Nano Letters, 2013, 13(8): 3626-3630. |
[2] | BHATTACHARYYA S, PANDEY T, SINGH A K.Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2.Nanotechnology, 2014, 25(46): 465701. |
[3] | MAK K F, LEE C, HONE J, et al.Atomically thin MoS2: a new direct-gap semiconductor.Physical Review Letters, 2010, 105(13): 13685. |
[4] | SHI Y M, ZHOU W, LU A Y, et al.Van der Waals epitaxy of MoS2 layers using graphene as growth templates.Nano letters, 2012, 12(6): 2784-2791. |
[5] | TAN Y H, YU K, YANG T, et al.The combinations of hollow MoS2 micro@nanospheres: one-step synthesis, excellent photocatalytic and humidity sensing properties.J. Mater. Chem. C, 2014, 2: 5422-5430. |
[6] | ZHU H, DU M L, ZHANG M, et al.The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures with structure-sensitive properties.Journal of Materials Chemistry A, 2014, 2(21): 7680-7685. |
[7] | CHEN Z, CUMMINS D, REINECKE B N, et al.Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials.Nano Letters, 2011, 11(10): 4168-4175. |
[8] | WU Z Z, WANG D Z, LIANG X, et al.Novel hexagonal MoS2 nanoplates formed by solid-state assembly of nanosheets.Journal of Crystal Growth, 2010, 312(12): 1973-1976. |
[9] | LIN H T, CHEN X Y, Li H L, et al.Hydrothermal synthesis and characterization of MoS2 nanorods.Materials Letters, 2010, 64: 1748-1750. |
[10] | DEEPAK F L, MAYORAL A, YACAMAN M J.Faceted MoS2 nanotubes and nanoflowers.Materials Chemistry and Physics, 2009, 118(2): 392-397. |
[11] | YU Y, HUANG S Y, LI Y, et al.Layer-dependent electrocatalysis of MoS2 for hydrogen evolution.Nano Letters, 2014, 14(2): 553-558. |
[12] | DING S, ZHANG D, CHEN J S, et al.Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties.Nanoscale, 2012, 4(1): 95-98. |
[13] | CAI Y, YANG X, LIANG T, et al.Easy incorporation of single- walled carbon nanotubes into two-dimensional MoS2 for high- performance hydrogen evolution.Nanotechnology, 2014, 25(46): 465401. |
[14] | SU S, SUN H F, XU F, et al.Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles‐decorated MoS2 nanosheets modified electrode.Electroanalysis, 2013, 25(11): 2523-2529. |
[15] | MANNEBACH E M, DUERLOO K A N, PELLOUCHOUD L A, et al. Ultrafast electronic and structural response of monolayer MoS2 under intense photoexcitation conditions.ACS Nano, 2014, 8(10): 10734-10742. |
[16] | SHI J P, MA D L, HAN G F, et al.Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction.ACS Nano, 2014, 8(10): 10196-10204. |
[17] | ZHAN Y J, LIU Z, NAJMAEI S, et al.Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate.Small, 2012, 8(7): 966-971. |
[18] | LIU K K, ZHANG W, LEE Y H, et al.Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates.Nano Letters, 2012, 12(3): 1538-1544. |
[19] | KONG D, WANG H, CHA J J, et al.Synthesis of MoS2 and MoSe2 films with vertically aligned layers.Nano Letters, 2013, 13(3): 1341-1347. |
[20] | CAI G M, JIAN J K, CHEN X L, et al.Regular hexagonal MoS2 microflakes grown from MoO3 precursor.Applied Physics A, 2007, 89(3): 783-788. |
[21] | MCDONNELL S, ADDOU R, BUIE C, et al.Defect-dominated doping and contact resistance in MoS2.ACS Nano, 2014, 8(3): 2880-2888. |
[22] | EDA G, YAMAGUCHI H, VOIRY D, et al.Photoluminescence from chemically exfoliated MoS2.Nano Letters, 2011, 11(12): 5111-5116. |
[23] | LIU N, KIM P, KIM J H, et al.Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation.ACS Nano, 2014, 8(7): 6902-6910. |
[24] | YIN Z Y, LI H, LI H, et al.Single-layer MoS2 phototransistors.ACS Nano, 2011, 6(1): 74-80. |
[25] | GOPALAKRISHNAN D, DAMIEN D, SHAIJUMON M M.MoS2 quantum dots interspersed exfoliated MoS2 nanosheets.ACS Nano, 2014, 8(5): 5297-5303. |
[26] | MAIJENBURG A W, REGIS M, HATTORI A N, et al.MoS2 nanocube structures as catalysts for electrochemical H2 evolution from acidic aqueous solutions.ACS Applied Materials & Interfaces, 2014, 6(3): 2003-2010. |
[27] | LI Q, WALTER E C, VAM DER VEER W E, et al. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.The Journal of Physical Chemistry B, 2005, 109(8): 3169-3182. |
[28] | KIBSGAARD J, CHEN Z B, REINECKE B N, et al.Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis.Nature Materials, 2012, 11(11): 963-969. |
[29] | MA C B, QI X, CHEN B, et al.MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction.Nanoscale, 2014, 6(11): 5624-5629. |
[30] | LIU H, SU X, DUAN C Y, et al.A novel hydrogen peroxide biosensor based on immobilized hemoglobin in3D flower-like MoS2 microspheres structure.Meterials Letters, 2014, 122: 182-185. |
[31] | LI G W, LI C S, TANG H, et al.Synthesis and characterization of hollow MoS2 microspheres grown from MoO3 precursors.Journal of Alloys and Compounds, 2010, 501(2): 275-281. |
[32] | ZHANG L, LOU X W D. Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage.Chemistry-A European Journal, 2014, 20(18): 5219-5223. |
[33] | LI Y G, WANG H L, XIE L M, et al.MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction.Journal of the American Chemical Society, 2011, 133(19): 7296-7299. |
[34] | TANG G G, SUN J R, CHEN W, et al.Surfactant-assisted hydrothermal synthesis and tribological properties of flower-like MoS2 nanostructures.Micro & Nano Letters, 2013, 8(3): 164-168. |
[35] | RAPOPORT L, FLEISCHER N, TENNE R.Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites.J. Mater. Chem., 2005, 15(18): 1782-1788. |
[36] | YUWEN L H, XU F, XUE B, et al.General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation.Nanoscale, 2014, 6: 5762-5769. |
[37] | LI J Z, YU K, TAN Y H, et al.Facile synthesis of novel MoS2@SnO2 hetero-nanoflowers and enhanced photocatalysis and field-emission properties.Dalton Transactions, 2014, 43(34): 13136-13144. |
[38] | TAN Y H, YU K, LI J Z, et al.MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties.Journal of Applied Physics, 2014, 116(6): 064305. |
[39] | YOU X Q, LIU N, LEE C J, et al.An electrochemical route to MoS2 nanosheets for device applications.Materials Letters, 2014, 121: 31-35. |
[40] | KWAK J Y, HWANG J, CALDERON B, et al.Electrical characteristics of multilayer MoS2 FET’s with MoS2/graphene heterojunction contacts.Nano Letters, 2014, 14(8): 4511-4516. |
[41] | LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al.Ultrasensitive photodetectors based on monolayer MoS2.Nature Nanotechnology, 2013, 8(7): 497-501. |
[42] | LI X, LI J H, WANG X H, et al.Preparation, applications of two-Dimensional graphene-like molybdenum disulfide.Integrated Ferroelectrics, 2014, 158: 26-42. |
[43] | RADISAVLJEVIC B, WHITWICK M B, KIS A.Integrated circuits and logic operations based on single-layer MoS2.ACS Nano, 2011, 5(12): 9934-9938. |
[44] | WANG H, YU L, LEE Y H, et al.Integrated circuits based on bilayer MoS2 transistors.Nano Letters, 2012, 12(9): 4674-4680. |
[45] | LOO A H, BONANNI A, AMBROSI A, et al.Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.Nanoscale, 2014, 6: 11971-11975. |
[46] | LIN T R, ZHONG L S, GUO L Q, et al.Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets.Nanoscale, 2014, 6(20): 11856-11862. |
[47] | LIU T, SHI S X, LIANG C, et al.Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy.ACS Nano, 2015, 9(1): 950-960. |
[48] | WANG T Y, ZHU R Z, ZHUO J Q, et al.Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors.Analytical Chemistry, 2014, 86(24): 12064-12069. |
[49] | XU X, FAN Z Y, DING S J, et al.Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage.Nanoscale, 2014, 6(10): 5245-5250. |
[50] | LUO H, ZHANG L Z, YUE L.Synthesis of MoS2/C submicrosphere by PVP-assisted hydrothermal method for lithium ion battery.Advanced Materials Research, 2012, 531: 471-477. |
[51] | CHANG K, CHEN W X.L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries.ACS Nano, 2011, 5(6): 4720-4728. |
[52] | HU L R, REN Y M, YANG H X, et al.Fabrication of 3D hierarchical MoS2/Polyaniline and MoS2/C architectures for lithium-ion battery applications.ACS Applied Materials & Interfaces, 2014, 6(16): 14644-14652. |
[53] | WANG Y, XING G Z, HAN Z J, et al.Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries.Nanoscale, 2014, 6: 8884-8890. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||