Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (7): 673-682.DOI: 10.15541/jim20140617
• Orginal Article • Next Articles
WANG Yan-Xiang, LUO Jun, GUO Ping-Chun, ZHAO Xue-Guo, YANG Zhi-Sheng, ZHU Hua, SUN Jian
Received:
2014-11-28
Revised:
2015-01-22
Published:
2015-07-20
Online:
2015-06-25
Supported by:
CLC Number:
WANG Yan-Xiang, LUO Jun, GUO Ping-Chun, ZHAO Xue-Guo, YANG Zhi-Sheng, ZHU Hua, SUN Jian. Application and Development of Hybrid Perovskite Materials in the Field of Solar Cells[J]. Journal of Inorganic Materials, 2015, 30(7): 673-682.
Fig. 3 A schematic illustration of organolead halide perovskite sensitized TiO2 undergoing photoexcitation and electron transfer (a) and the incident photon to electron conversion efficiency (IPCE) spectra for perovskite sensitized solar cells (b)[5]
Fig. 4 a) UV/Vis absorption spectra of CH3NH3Pb(I1-xBrx)3; b) Pictures of 3D TiO2/CH3NH3Pb(I1-xBrx)3 bilayer nanocomposites on FTO glass substrates; c) Quadratic relationship of the band gaps of CH3NH3Pb(I1-xBrx)3 as a function of Br composition (x)[16]
Composition | Bandgap/eV | Structure at room temperature |
---|---|---|
CH3NH3PbI3 | 1.50-1.61 | Tetragonal[ |
CH3NH3PbBr3 | 2.32 | Cubic[ |
CH3NH3PbCl3 | 3.10 | Cubic[ |
CH3NH3PbI3-xClx | 1.55-1.64 | Tetragona[ |
HC(NH2)2PbI3 | 1.47 | Tetragona[ |
Table 1 Properties of different lead halide perovskites
Composition | Bandgap/eV | Structure at room temperature |
---|---|---|
CH3NH3PbI3 | 1.50-1.61 | Tetragonal[ |
CH3NH3PbBr3 | 2.32 | Cubic[ |
CH3NH3PbCl3 | 3.10 | Cubic[ |
CH3NH3PbI3-xClx | 1.55-1.64 | Tetragona[ |
HC(NH2)2PbI3 | 1.47 | Tetragona[ |
Fig. 5 (a) Real solid-state device; (b) Cross-sectional structure of the device; (c) Cross-sectional SEM image of the device; (d) Active layer-underlayer-FTO interfacial junction structure[15]
Device structure | The types of photo anode films | Scaffold | Hole-selective contact |
---|---|---|---|
Mesoporous structure | Compact TiO2 | Meso-TiO2 | Spiro-OMeTAD[ |
Polymers[ | |||
Inorganic[ | |||
Meso-superstructured | Compact TiO2 | Meso-Al2O3 | Spiro-OMeTAD[ |
Meso-ZrO2 | |||
Planar heterojunction structure | Compact TiO2/ZnO | — | Spiro-OMeTAD[ |
Table 2 Types of photo anode films in a perovskite solar cell with different device structures
Device structure | The types of photo anode films | Scaffold | Hole-selective contact |
---|---|---|---|
Mesoporous structure | Compact TiO2 | Meso-TiO2 | Spiro-OMeTAD[ |
Polymers[ | |||
Inorganic[ | |||
Meso-superstructured | Compact TiO2 | Meso-Al2O3 | Spiro-OMeTAD[ |
Meso-ZrO2 | |||
Planar heterojunction structure | Compact TiO2/ZnO | — | Spiro-OMeTAD[ |
Fig. 7 Four general methods to prepare perovskite active layers (a) One step precursor deposition method; (b) Sequential deposition method[30]; (c) Dual source vapour deposition[47]; (d) Vapor-assisted solution process[59]
Fig. 9 Device architecture and energy level diagram (a) Schematics cross-sectional view of the perovskite solar cell configuration: FTO glass, compact TiO2 underlayer, mesoporous TiO2 with infiltrated CH3NH3PbI3, CuSCN HTM and gold; (b) Energy level diagram of the TiO2/CH3NH3PbI3/CuSCN/Au device showing ideal electron injection and hole extraction[54]
Fig. 10 (A) Schematic illustration showing the cross section of the triple-layer perovskite-based fully printable mesoscopic solar cell and (B) energy band diagram of the triple-layer device[68]
[1] | MITZI D B, FEILD C A, HARRISON W T A, et al. Conducting tin halides with a layered organic-based perovskite structure.Nature, 1994, 369(6480): 467-469. |
[2] | MITZI D B, CHONDROUDIS K, KAGAN C R.Organic-inorganic electronics.IBM J. Res. Dev., 2001, 45(1): 29-45. |
[3] | MITZI D B, DIMITRAKOPOULOS C D, ROSNER J, et al.Hybrid field-effect transistor based on a low-temperature melt- processed channel layer.Adv. Mater. 2002. 14(23): 1772-1776. |
[4] | CHENG Z Y, LIN J.Layered organic-inorganic hybrid perovskites structure, optical properties, film preparation, patterning and templating engineering.CrystEngComm, 2010, 12(10): 2646-2662. |
[5] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. |
[6] | IM J H, LEE C R, LEE J W, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 2011, 3(10): 4088-4093. |
[7] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science, 2012, 338(6107): 643-647. |
[8] | BURSCHKA J, PELLET N, MOON S J, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature, 2013, 499(7458): 316-319. |
[9] | JEON N J, LEE H G, KIM Y C, et al.o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells.J. Am. Chem. Soc., 2014, 136(22): 7837-7840. |
[10] | ZHOU H P, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6169): 542-546. |
[11] | PARK N G.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.J. Phys. Chem. Lett., 2013, 4(15): 2423-2429. |
[12] | SINGH S P, NAGARJUNA P.Organometal halide perovskites as useful materials in sensitized solar cells.Dalton Trans., 2014, 43(14): 5247-5251. |
[13] | SARUKURA N, MURAKAMI H, ESTACIO E, et al.Proposed design principle of fluoride based materials for deep ultraviolet light emitting devices.Opt. Mater., 2007, 30(1): 15-17. |
[14] | ZHANG F, MAO Y B, PARK T J, et al.Green synthesis and property characterization of single-crystalline perovskite fluoride nanorods.Adv. Funct. Mater., 2008, 18(1): 103-112. |
[15] | KIM H S, LEE C R, IM J H, et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.Sci. Rep., 2012, 2: 591. |
[16] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Lett., 2013, 13(4): 1764-1769. |
[17] | KITAZAWA N, WATANABE Y, NAKAMURA Y.Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals.J. Mater. Sci., 2002, 37(17): 3585-3587. |
[18] | RHEE J H, CHUNG C C, DIAU E W G. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites.NPG Asia Mater., 2013, 5: e68; doi: 10.1038/am.2013.53. |
[19] | EDRI E, KIRMAYER S, CAHEN D, et al.High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite.Phys. Chem. Lett., 2013, 4(6): 897-902. |
[20] | BI D Q, YANG L, BOSCHLOO G, et al.Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells.J. Phys. Chem. Lett., 2013, 4(9): 1532-1536. |
[21] | EPERON G E, BURLAKOV V M, DOCAMPO P, et al.Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells.Adv. Funct. Mater., 2014, 24(1): 151-157. |
[22] | ETGAR L, GAO P, XUE Z S, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.J. Am. Chem. Soc., 2012, 134(42): 17396-17399. |
[23] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6165): 341-344. |
[24] | COLELLA S, MOSCONI E, FEDELI P, et al.MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties.Chem. Mater., 2013, 25(22): 4613-4618. |
[25] | WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al.High charge carrier mobilities and lifetimes in organolead trihalide perovskites.Adv. Mater., 2014, 26(10): 1584-1589. |
[26] | EDIR E, KIRMAYER S, KULBAK M, et al.Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells.J. Phys. Chem. Lett., 2014, 5(3): 429-433. |
[27] | STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G.Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorg. Chem., 2013, 52(15): 9019-9038. |
[28] | LEE J W, SEOL D J, CHO A N, et al.High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3.Adv. Mater., 2014, 26(29): 4991-4998. |
[29] | EPERON G E, STRANKS S D, MENELAOU C, et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci., 2014, 7(3): 982-988. |
[30] | PANG S P, HU H, ZHANG J L, et al.NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells.Chem. Mater., 2014, 26(3): 1485-1491. |
[31] | YAMADA Y, NAKAMURA T, ENDO M, et al.Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes.Appl. Phys. Express., 2014, 7(3): 032302. |
[32] | GIACOMO F D, RAZZA S, MATTEOCCI F, et al.High efficiency CH3NH3PbI(3-x)Clx perovskite solar cells with poly (3-hexylthiophene) hole transport layer.J. Power Sources, 2014, 251: 152-156. |
[33] | MA Y Z, ZHENG L L, CHUNG Y S, et al.Highly efficient mesoscopic solar cell based on CH3NH3PbI3-xClx via sequential solution deposition.Chem. Commun., 2014, 50(83): 12458-12461. |
[34] | BALL J M, LEE M M, HEY A, et al.Low-temperature processed meso-superstructured to thin-film perovskite solar cells.Energy Environ. Sci., 2013, 6(6): 1739-1743. |
[35] | CHOI H, JEONG J, KIM H B, et al.Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells.Nano Energy, 2014, 7: 80-85. |
[36] | OGOMI Y, MORITA A, TSUKAMOTO S, et al.CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm.J. Phys. Chem. Lett., 2014, 5(6): 1004-1011. |
[37] | AHARON S, GAMLIEL S, COHEN B E, et al.Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.Phys. Chem. Chem. Phys., 2014, 16(22): 10512-10518. |
[38] | LABAN W A, ETGAR L.Depleted hole conductor-free lead halide iodide heterojunction solar cells.Energy Environ. Sci., 2013, 6(11): 3249-3253. |
[39] | SEO J, PARK S, KIM Y C, et al.Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells.Energy Environ. Sci., 2014, 7(8): 2642-2646. |
[40] | SNAITH H J.Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells.J. Phys. Chem. Lett., 2013, 4(21): 3623-3630. |
[41] | CAI B, XING Y D, YANG Z, et al.High performance hybrid solar cells sensitized by organolead halide perovskites.Energy Environ. Sci., 2013, 6(5): 1480-1485. |
[42] | QIU J H, QIU Y C, YAN K Y, et al.All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one- dimensional TiO2 nanowire arrays.Nanoscale, 2013, 5(8): 3245-3248. |
[43] | ZHANG W, SALIBA M, STRANKS S D, et al.Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.Nano Lett., 2013, 13(9): 4505-4510. |
[44] | XING G C, MATHEWS N, SUN S Y, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[45] | KIM H S, PARK N G, BISQUERT J.et al.Mechanism of carrier accumulation in perovskite thin absorber solar cells.Nat. Commun., 2013, 4: 2242. |
[46] | BI D Q, HÄGGMAN L, BOSCHLOO G, et al. Using a two step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures.RSC Adv., 2013, 3(41): 18762-18766. |
[47] | LIU M Z, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature, 2013, 501(7467): 395-398. |
[48] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nat. Photon., 2013, 7: 486-491. |
[49] | KWON Y S, LIM J, YUN H J, et al.A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite.Energy Environ. Sci., 2014, 7(4): 1454-1460. |
[50] | MARIN-BELOQUI J M, HERNÁNDEZ J P, PALOMARES E. Photo-induced charge recombination kinetics in MAPbI3-xClx perovskite-like solar cells using low band-gap polymers as hole conductors.Chem. Commun., 2014, 50(93): 14566-14569. |
[51] | GUO Y L, LIU C, INOUE K, et al.Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer.J. Mater. Chem. A, 2014, 2(34): 13827-13830. |
[52] | JEON N G, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nat Mater, 2014, 13: 897-903. |
[53] | CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide.J. Am. Chem. Soc., 2014, 136(2): 758-764. |
[54] | QIN P, TANAKA S, ITO S, et al.Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency.Nat. Commun., 2014, 5: 3834. |
[55] | LI H R, FU K W, BOIX P P, et al.Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells.ChemSusChem, 2014, 7(12): 3420-3425. |
[56] | LIU D Y, KELLY T L.Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.Nat Photon., 2013, 8: 133-138. |
[57] | WU Y Z, ISLAM A, YANG X D, et al.Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition.Energy Environ. Sci., 2014, 7(9): 2934-2938. |
[58] | BARROWS A T, PEARSON A J, KWAK C, et al.Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition.Energy Environ. Sci., 2014, 7(9): 2944-2950. |
[59] | CHEN Q, ZHOU H P, HONG Z R, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.J. Am. Chem. Soc., 2014, 136(2): 622-625. |
[60] | CHUNG I, LEE B, HE J Q, et al.All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486-489. |
[61] | WU Z W, BAI S, XIANG J, et al.Efficient planar heterojunction perovskite solar cell employing graphene oxide as hole conductor.Nanoscale, 2014, 6(18): 10505-10510. |
[62] | SHI J J, DONG W, XU Y Z, et al.Enhanced performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator- semiconductor back contact.Chin. Phys. Lett., 2013, 30(12): 128402. |
[63] | SHI J J, DONG J, LV S T, et al.Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property.Appl. Phys. Lett., 2014, 104(6): 063901. |
[64] | HAN H W, BACH U, CHENG Y B, et al.A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode.Appl. Phys. Lett., 2009, 94(10): 103102. |
[65] | KU Z L, RONG Y G, XU M, et al.Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode.Sci. Rep., 2013, 3: 3132. |
[66] | RONG Y G, HAN H W.Monolithic quasi solid state dye sensitized solar cells based on graphene modified mesoscopic carbon-counter electrodes.J. Nanophoton., 2013, 7(1): 073090. |
[67] | RONG Y G, KU Z L, MEI A Y, et al.Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes.J. Phys. Chem. Lett., 2014, 5(12): 2160-2164. |
[68] | MEI A Y, LI X, LIU L F, et al.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science, 2014, 345(6194): 295-298. |
[69] | SUPASAI T, RUJISAMPHAN N, ULLRICH K, et al.Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers.Appl. Phys. Lett., 2013, 103(18): 183906. |
[70] | LEIJTENS T, EPERON G E, PATHAK S, et al.Overcoming ultraviolet light instability of sensitized TiO2 with meso superstructured organometal triHalide perovskite solar cells. Nat. Commun., 2014, 4: 2885. |
[71] | NIU G D, LI W Z, MENG F Q, et al.Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells.J. Mater. Chem. A, 2014, 2(3): 705-710. |
[72] | MISRA R K, AHARON S, LI B L, et al.Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight.J. Phys. Chem. Lett., 2015, 6: 326-330. |
[73] | ZHENG L L, CHUNG Y H, MA Y Z, et al.A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability.Chem. Commun., 2014, 50(76): 11196-11199. |
[74] | HABISREUTINGER S N, LEIJTENS T, EPERON G E, et al.Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells.Nano Lett., 2014, 14(10): 5561-5568. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[8] | NI Xiaomeng, XU Fangxian, LIU Jingjing, ZHANG Shuai, GUO Huafei, YUAN Ningyi. Photovoltaic Performance of Sb2(S,Se)3 Film Enhanced by Addition of Formamidinesulfinic Acid [J]. Journal of Inorganic Materials, 2025, 40(4): 372-378. |
[9] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[10] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[11] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[12] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[13] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[14] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[15] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||