Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (7): 673-682.DOI: 10.15541/jim20140617
• Orginal Article • Next Articles
WANG Yan-Xiang, LUO Jun, GUO Ping-Chun, ZHAO Xue-Guo, YANG Zhi-Sheng, ZHU Hua, SUN Jian
Received:
2014-11-28
Revised:
2015-01-22
Published:
2015-07-20
Online:
2015-06-25
Supported by:
CLC Number:
WANG Yan-Xiang, LUO Jun, GUO Ping-Chun, ZHAO Xue-Guo, YANG Zhi-Sheng, ZHU Hua, SUN Jian. Application and Development of Hybrid Perovskite Materials in the Field of Solar Cells[J]. Journal of Inorganic Materials, 2015, 30(7): 673-682.
Fig. 3 A schematic illustration of organolead halide perovskite sensitized TiO2 undergoing photoexcitation and electron transfer (a) and the incident photon to electron conversion efficiency (IPCE) spectra for perovskite sensitized solar cells (b)[5]
Fig. 4 a) UV/Vis absorption spectra of CH3NH3Pb(I1-xBrx)3; b) Pictures of 3D TiO2/CH3NH3Pb(I1-xBrx)3 bilayer nanocomposites on FTO glass substrates; c) Quadratic relationship of the band gaps of CH3NH3Pb(I1-xBrx)3 as a function of Br composition (x)[16]
Composition | Bandgap/eV | Structure at room temperature |
---|---|---|
CH3NH3PbI3 | 1.50-1.61 | Tetragonal[ |
CH3NH3PbBr3 | 2.32 | Cubic[ |
CH3NH3PbCl3 | 3.10 | Cubic[ |
CH3NH3PbI3-xClx | 1.55-1.64 | Tetragona[ |
HC(NH2)2PbI3 | 1.47 | Tetragona[ |
Table 1 Properties of different lead halide perovskites
Composition | Bandgap/eV | Structure at room temperature |
---|---|---|
CH3NH3PbI3 | 1.50-1.61 | Tetragonal[ |
CH3NH3PbBr3 | 2.32 | Cubic[ |
CH3NH3PbCl3 | 3.10 | Cubic[ |
CH3NH3PbI3-xClx | 1.55-1.64 | Tetragona[ |
HC(NH2)2PbI3 | 1.47 | Tetragona[ |
Fig. 5 (a) Real solid-state device; (b) Cross-sectional structure of the device; (c) Cross-sectional SEM image of the device; (d) Active layer-underlayer-FTO interfacial junction structure[15]
Device structure | The types of photo anode films | Scaffold | Hole-selective contact |
---|---|---|---|
Mesoporous structure | Compact TiO2 | Meso-TiO2 | Spiro-OMeTAD[ |
Polymers[ | |||
Inorganic[ | |||
Meso-superstructured | Compact TiO2 | Meso-Al2O3 | Spiro-OMeTAD[ |
Meso-ZrO2 | |||
Planar heterojunction structure | Compact TiO2/ZnO | — | Spiro-OMeTAD[ |
Table 2 Types of photo anode films in a perovskite solar cell with different device structures
Device structure | The types of photo anode films | Scaffold | Hole-selective contact |
---|---|---|---|
Mesoporous structure | Compact TiO2 | Meso-TiO2 | Spiro-OMeTAD[ |
Polymers[ | |||
Inorganic[ | |||
Meso-superstructured | Compact TiO2 | Meso-Al2O3 | Spiro-OMeTAD[ |
Meso-ZrO2 | |||
Planar heterojunction structure | Compact TiO2/ZnO | — | Spiro-OMeTAD[ |
Fig. 7 Four general methods to prepare perovskite active layers (a) One step precursor deposition method; (b) Sequential deposition method[30]; (c) Dual source vapour deposition[47]; (d) Vapor-assisted solution process[59]
Fig. 9 Device architecture and energy level diagram (a) Schematics cross-sectional view of the perovskite solar cell configuration: FTO glass, compact TiO2 underlayer, mesoporous TiO2 with infiltrated CH3NH3PbI3, CuSCN HTM and gold; (b) Energy level diagram of the TiO2/CH3NH3PbI3/CuSCN/Au device showing ideal electron injection and hole extraction[54]
Fig. 10 (A) Schematic illustration showing the cross section of the triple-layer perovskite-based fully printable mesoscopic solar cell and (B) energy band diagram of the triple-layer device[68]
[1] | MITZI D B, FEILD C A, HARRISON W T A, et al. Conducting tin halides with a layered organic-based perovskite structure.Nature, 1994, 369(6480): 467-469. |
[2] | MITZI D B, CHONDROUDIS K, KAGAN C R.Organic-inorganic electronics.IBM J. Res. Dev., 2001, 45(1): 29-45. |
[3] | MITZI D B, DIMITRAKOPOULOS C D, ROSNER J, et al.Hybrid field-effect transistor based on a low-temperature melt- processed channel layer.Adv. Mater. 2002. 14(23): 1772-1776. |
[4] | CHENG Z Y, LIN J.Layered organic-inorganic hybrid perovskites structure, optical properties, film preparation, patterning and templating engineering.CrystEngComm, 2010, 12(10): 2646-2662. |
[5] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. |
[6] | IM J H, LEE C R, LEE J W, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 2011, 3(10): 4088-4093. |
[7] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science, 2012, 338(6107): 643-647. |
[8] | BURSCHKA J, PELLET N, MOON S J, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature, 2013, 499(7458): 316-319. |
[9] | JEON N J, LEE H G, KIM Y C, et al.o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells.J. Am. Chem. Soc., 2014, 136(22): 7837-7840. |
[10] | ZHOU H P, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6169): 542-546. |
[11] | PARK N G.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.J. Phys. Chem. Lett., 2013, 4(15): 2423-2429. |
[12] | SINGH S P, NAGARJUNA P.Organometal halide perovskites as useful materials in sensitized solar cells.Dalton Trans., 2014, 43(14): 5247-5251. |
[13] | SARUKURA N, MURAKAMI H, ESTACIO E, et al.Proposed design principle of fluoride based materials for deep ultraviolet light emitting devices.Opt. Mater., 2007, 30(1): 15-17. |
[14] | ZHANG F, MAO Y B, PARK T J, et al.Green synthesis and property characterization of single-crystalline perovskite fluoride nanorods.Adv. Funct. Mater., 2008, 18(1): 103-112. |
[15] | KIM H S, LEE C R, IM J H, et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.Sci. Rep., 2012, 2: 591. |
[16] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Lett., 2013, 13(4): 1764-1769. |
[17] | KITAZAWA N, WATANABE Y, NAKAMURA Y.Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals.J. Mater. Sci., 2002, 37(17): 3585-3587. |
[18] | RHEE J H, CHUNG C C, DIAU E W G. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites.NPG Asia Mater., 2013, 5: e68; doi: 10.1038/am.2013.53. |
[19] | EDRI E, KIRMAYER S, CAHEN D, et al.High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite.Phys. Chem. Lett., 2013, 4(6): 897-902. |
[20] | BI D Q, YANG L, BOSCHLOO G, et al.Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells.J. Phys. Chem. Lett., 2013, 4(9): 1532-1536. |
[21] | EPERON G E, BURLAKOV V M, DOCAMPO P, et al.Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells.Adv. Funct. Mater., 2014, 24(1): 151-157. |
[22] | ETGAR L, GAO P, XUE Z S, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.J. Am. Chem. Soc., 2012, 134(42): 17396-17399. |
[23] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6165): 341-344. |
[24] | COLELLA S, MOSCONI E, FEDELI P, et al.MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties.Chem. Mater., 2013, 25(22): 4613-4618. |
[25] | WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al.High charge carrier mobilities and lifetimes in organolead trihalide perovskites.Adv. Mater., 2014, 26(10): 1584-1589. |
[26] | EDIR E, KIRMAYER S, KULBAK M, et al.Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells.J. Phys. Chem. Lett., 2014, 5(3): 429-433. |
[27] | STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G.Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorg. Chem., 2013, 52(15): 9019-9038. |
[28] | LEE J W, SEOL D J, CHO A N, et al.High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3.Adv. Mater., 2014, 26(29): 4991-4998. |
[29] | EPERON G E, STRANKS S D, MENELAOU C, et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci., 2014, 7(3): 982-988. |
[30] | PANG S P, HU H, ZHANG J L, et al.NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells.Chem. Mater., 2014, 26(3): 1485-1491. |
[31] | YAMADA Y, NAKAMURA T, ENDO M, et al.Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes.Appl. Phys. Express., 2014, 7(3): 032302. |
[32] | GIACOMO F D, RAZZA S, MATTEOCCI F, et al.High efficiency CH3NH3PbI(3-x)Clx perovskite solar cells with poly (3-hexylthiophene) hole transport layer.J. Power Sources, 2014, 251: 152-156. |
[33] | MA Y Z, ZHENG L L, CHUNG Y S, et al.Highly efficient mesoscopic solar cell based on CH3NH3PbI3-xClx via sequential solution deposition.Chem. Commun., 2014, 50(83): 12458-12461. |
[34] | BALL J M, LEE M M, HEY A, et al.Low-temperature processed meso-superstructured to thin-film perovskite solar cells.Energy Environ. Sci., 2013, 6(6): 1739-1743. |
[35] | CHOI H, JEONG J, KIM H B, et al.Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells.Nano Energy, 2014, 7: 80-85. |
[36] | OGOMI Y, MORITA A, TSUKAMOTO S, et al.CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm.J. Phys. Chem. Lett., 2014, 5(6): 1004-1011. |
[37] | AHARON S, GAMLIEL S, COHEN B E, et al.Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.Phys. Chem. Chem. Phys., 2014, 16(22): 10512-10518. |
[38] | LABAN W A, ETGAR L.Depleted hole conductor-free lead halide iodide heterojunction solar cells.Energy Environ. Sci., 2013, 6(11): 3249-3253. |
[39] | SEO J, PARK S, KIM Y C, et al.Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells.Energy Environ. Sci., 2014, 7(8): 2642-2646. |
[40] | SNAITH H J.Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells.J. Phys. Chem. Lett., 2013, 4(21): 3623-3630. |
[41] | CAI B, XING Y D, YANG Z, et al.High performance hybrid solar cells sensitized by organolead halide perovskites.Energy Environ. Sci., 2013, 6(5): 1480-1485. |
[42] | QIU J H, QIU Y C, YAN K Y, et al.All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one- dimensional TiO2 nanowire arrays.Nanoscale, 2013, 5(8): 3245-3248. |
[43] | ZHANG W, SALIBA M, STRANKS S D, et al.Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.Nano Lett., 2013, 13(9): 4505-4510. |
[44] | XING G C, MATHEWS N, SUN S Y, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[45] | KIM H S, PARK N G, BISQUERT J.et al.Mechanism of carrier accumulation in perovskite thin absorber solar cells.Nat. Commun., 2013, 4: 2242. |
[46] | BI D Q, HÄGGMAN L, BOSCHLOO G, et al. Using a two step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures.RSC Adv., 2013, 3(41): 18762-18766. |
[47] | LIU M Z, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature, 2013, 501(7467): 395-398. |
[48] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nat. Photon., 2013, 7: 486-491. |
[49] | KWON Y S, LIM J, YUN H J, et al.A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite.Energy Environ. Sci., 2014, 7(4): 1454-1460. |
[50] | MARIN-BELOQUI J M, HERNÁNDEZ J P, PALOMARES E. Photo-induced charge recombination kinetics in MAPbI3-xClx perovskite-like solar cells using low band-gap polymers as hole conductors.Chem. Commun., 2014, 50(93): 14566-14569. |
[51] | GUO Y L, LIU C, INOUE K, et al.Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer.J. Mater. Chem. A, 2014, 2(34): 13827-13830. |
[52] | JEON N G, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nat Mater, 2014, 13: 897-903. |
[53] | CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide.J. Am. Chem. Soc., 2014, 136(2): 758-764. |
[54] | QIN P, TANAKA S, ITO S, et al.Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency.Nat. Commun., 2014, 5: 3834. |
[55] | LI H R, FU K W, BOIX P P, et al.Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells.ChemSusChem, 2014, 7(12): 3420-3425. |
[56] | LIU D Y, KELLY T L.Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.Nat Photon., 2013, 8: 133-138. |
[57] | WU Y Z, ISLAM A, YANG X D, et al.Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition.Energy Environ. Sci., 2014, 7(9): 2934-2938. |
[58] | BARROWS A T, PEARSON A J, KWAK C, et al.Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition.Energy Environ. Sci., 2014, 7(9): 2944-2950. |
[59] | CHEN Q, ZHOU H P, HONG Z R, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.J. Am. Chem. Soc., 2014, 136(2): 622-625. |
[60] | CHUNG I, LEE B, HE J Q, et al.All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486-489. |
[61] | WU Z W, BAI S, XIANG J, et al.Efficient planar heterojunction perovskite solar cell employing graphene oxide as hole conductor.Nanoscale, 2014, 6(18): 10505-10510. |
[62] | SHI J J, DONG W, XU Y Z, et al.Enhanced performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator- semiconductor back contact.Chin. Phys. Lett., 2013, 30(12): 128402. |
[63] | SHI J J, DONG J, LV S T, et al.Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property.Appl. Phys. Lett., 2014, 104(6): 063901. |
[64] | HAN H W, BACH U, CHENG Y B, et al.A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode.Appl. Phys. Lett., 2009, 94(10): 103102. |
[65] | KU Z L, RONG Y G, XU M, et al.Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode.Sci. Rep., 2013, 3: 3132. |
[66] | RONG Y G, HAN H W.Monolithic quasi solid state dye sensitized solar cells based on graphene modified mesoscopic carbon-counter electrodes.J. Nanophoton., 2013, 7(1): 073090. |
[67] | RONG Y G, KU Z L, MEI A Y, et al.Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes.J. Phys. Chem. Lett., 2014, 5(12): 2160-2164. |
[68] | MEI A Y, LI X, LIU L F, et al.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science, 2014, 345(6194): 295-298. |
[69] | SUPASAI T, RUJISAMPHAN N, ULLRICH K, et al.Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers.Appl. Phys. Lett., 2013, 103(18): 183906. |
[70] | LEIJTENS T, EPERON G E, PATHAK S, et al.Overcoming ultraviolet light instability of sensitized TiO2 with meso superstructured organometal triHalide perovskite solar cells. Nat. Commun., 2014, 4: 2885. |
[71] | NIU G D, LI W Z, MENG F Q, et al.Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells.J. Mater. Chem. A, 2014, 2(3): 705-710. |
[72] | MISRA R K, AHARON S, LI B L, et al.Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight.J. Phys. Chem. Lett., 2015, 6: 326-330. |
[73] | ZHENG L L, CHUNG Y H, MA Y Z, et al.A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability.Chem. Commun., 2014, 50(76): 11196-11199. |
[74] | HABISREUTINGER S N, LEIJTENS T, EPERON G E, et al.Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells.Nano Lett., 2014, 14(10): 5561-5568. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[5] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[6] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[7] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[8] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[9] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[10] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[11] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[12] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[13] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[14] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[15] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||