Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (1): 9-16.DOI: 10.15541/jim20140175
• Orginal Article • Previous Articles Next Articles
CHEN Ai-Bing, YU Yi-Feng, ZANG Wen-Wei, QI Guo-Lu, YU Yun-Hong, LI Yue-Tong
Received:
2014-04-08
Revised:
2014-06-16
Published:
2015-01-20
Online:
2014-12-29
About author:
CHEN Ai-Bing. E-mail:chen_ab@163.com
Supported by:
CLC Number:
CHEN Ai-Bing, YU Yi-Feng, ZANG Wen-Wei, QI Guo-Lu, YU Yun-Hong, LI Yue-Tong. Nitrogen-doped Porous Carbon for CO2 Adsorption[J]. Journal of Inorganic Materials, 2015, 30(1): 9-16.
Fig. 4 Relationships between the CO2 adsorption capacities (at 298 K and 1 .013×105 Pa) and the BET surface area of nitrogen- doped and undoped carbons. The N-doped carbons contain 6wt%-7wt% N[26]
Fig. 5 Schematic illustration of the synthesis method of mesoporous carbon foams(a) and CO2 adsorption kinetics of the PEI-impregnated mesoporous carbon sorbent at 75℃(b)[35]
Samples | Nitrogen source | Nitrogen content/wt% | Functionalities | Surface area /(m2·g-1) | CO2 capacity /(mmol·g-1) |
---|---|---|---|---|---|
N-doped microporous carbon [ | Imine-linked polymer | 5.58-8.74 | Pyridinic, quaternary | 263-366 | 1.95 |
N-doped mesoporous carbon[ | Melamine resin | -8.00 | Pyridinic, pyrrolic, quaternary | -750 | 1.80 |
KOH activated porous carbon[ | Polypyrrole | -10.14 | Pyridinic,quaternary | 1700 | 3.10 |
Organic amine grafting carbon[ | Glucose | NA | Amide, tertiary amines, primary amines | <10 | 4.10 |
Macro-micro hollow carbon spheres [ | Melamine | 14.80 | NA | 767 | 2.67 |
Sustainable biomass [ | Glgae | 1.1-4.7 | Pyridinic, pyrrolic, quaternary | 1300-2400 | 7.40 |
Template carbon [ | HNO3 | 6.73 | Pyridinic, pyrrolic, quaternary | 1979 | 4.30 |
N-doped activated carbon monoliths [ | Polyacrylonitrile | 1.80 | NA | 2501 | 5.14 |
Table 1 Different nitrogen doped carbon materials for CO2 adsorption capacity
Samples | Nitrogen source | Nitrogen content/wt% | Functionalities | Surface area /(m2·g-1) | CO2 capacity /(mmol·g-1) |
---|---|---|---|---|---|
N-doped microporous carbon [ | Imine-linked polymer | 5.58-8.74 | Pyridinic, quaternary | 263-366 | 1.95 |
N-doped mesoporous carbon[ | Melamine resin | -8.00 | Pyridinic, pyrrolic, quaternary | -750 | 1.80 |
KOH activated porous carbon[ | Polypyrrole | -10.14 | Pyridinic,quaternary | 1700 | 3.10 |
Organic amine grafting carbon[ | Glucose | NA | Amide, tertiary amines, primary amines | <10 | 4.10 |
Macro-micro hollow carbon spheres [ | Melamine | 14.80 | NA | 767 | 2.67 |
Sustainable biomass [ | Glgae | 1.1-4.7 | Pyridinic, pyrrolic, quaternary | 1300-2400 | 7.40 |
Template carbon [ | HNO3 | 6.73 | Pyridinic, pyrrolic, quaternary | 1979 | 4.30 |
N-doped activated carbon monoliths [ | Polyacrylonitrile | 1.80 | NA | 2501 | 5.14 |
[1] | ROCHELLE G T.Amine scrubbing for CO2 capture. Science, 2009, 325(5948):1652-1654. |
[2] | CHOMAA J, JEDYNAKB K, JARONIECC M, et al.Microporosity development in phenolic resin-based mesoporouscarbons for enhancing CO2 adsorption at ambient conditions.Applied Surface Science, 2014, 289(2): 592-600. |
[3] | LUO J, PENG F, ZHENG W X, et al.Aerobic liquid-phase oxidation of ethyl benzene to acetophenone catalyzed by carbon nanotubes.ChemCatChem, 2013, 5(6):1578-1586. |
[4] | ALAM N, MOKAYA R, Evolution of optimal porosity for improved hydrogen storage in template zeolite-like carbons.Energy Environ. Sci., 2010, 3(11): 1773-1781. |
[5] | WANG J X, XUE C F, LV Y Y, et al.Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance.Carbon, 2011; 49(13): 4580-4588. |
[6] | CHANG H, JOO S H, PAK C.Synthesis and characterization of mesoporouscarbonfor fuel cell applications. J. Mater. Chem., 2007, 17(30): 3078-3088. |
[7] | WU Z X, PAUL A, ZHAO D Y, et.al. Post-enrichment of nitrogen in soft-templated ordered mesoporouscarbonmaterials for highly efficient phenol removal and CO2 capture.J. Mater. Chem., 2012, 22(22):11379-11389. |
[8] | LIU L, DENG Q F, YUAN Z Y, et.al. Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture.J. Mater. Chem., 2011, 21(40): 16001-16009. |
[9] | WANG X Q, LIU C G, DAI S, et al.Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J. Mater. Chem. A, 2013, 1(27):7920-7926. |
[10] | DARGE T C, ARENILLA S A, SNAPE C E.Preparation of carbon dioxide adsorbents from the chemical activation of urea- formaldehyde and melamine-formaldehyde resins.Fuel, 2007, 86(1/2): 22-31. |
[11] | NANDI M, OKADA K, UYAMA D H.Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation.Chem. Commun., 2012, 48(83): 10283-10285. |
[12] | ZHAO Y F, ZHAO L, HAN Y, et al.Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture.J. Mater. Chem., 2012, 22(37): 19726-19731. |
[13] | SEVILLA M, VIGÓN P V, FUERTES A B. N-doped polypyrrole-based porous carbons for CO2capture.Adv. Funct. Mater., 2011, 21(14): 2781-2787. |
[14] | YU J Y, GUO M Y, ZHU G S, et al.One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol-urea-formaldehyde resin for CO2 capture.Carbon, 2014, 69(4): 502-514. |
[15] | FENG C M, LI H X, WAN Y.Fabrication of N-doped highly ordered mesoporous polymers and carbons.J. Nanosci. Nanotechnol, 2009, 9(2):1558-1563. |
[16] | WEI J, ZHOU D D, ZHAO D Y, et al.A Controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater., 2013, 23(18): 2322-2328. |
[17] | FULVIO P F, LEE J S, DAI S, et al.Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties.Phys. Chem. Chem. Phys., 2011, 13(30): 13486-13491. |
[18] | CHEN A B, YU Y F, LV H J, et al.Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors.J. Mater. Chem., 2013, 1(4): 1045-1047. |
[19] | CHEN A B, LIU C, YU Y F, et al.A co-confined carbonization approach to aligned nitrogen-doped mesoporous carbon nanofibers and its application as an adsorbent.J. Hazard. Mater., 2014, 276(13): 192-199. |
[20] | PLAZA M G, PEVIDA C, ARENILLAS A, et al.CO2 capture by adsorption with nitrogen enriched carbons.Fuel, 2007, 86(14): 2204-2212. |
[21] | SONG J, SHEN W Z, WANG J G, et al.Superior carbon-based CO2 adsorbents prepared from poplar anthers.Carbon, 2014, 69(4): 255-263. |
[22] | SAYARI A, BELMABKHOUT Y.Stabilization of amine- containing CO2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc., 2010, 132(18): 6312-6314. |
[23] | WANG J C, LIU Q.An efficient one-step condensation and activationstrategy to synthesize porous carbons with optimal micropore sizes for highly selective CO2 adsorption.Nanoscale, 2014, 6(8): 4148-4156. |
[24] | ZHANG Z.S, ZHOU J, QIAO S Z, et al. Critical role of small micropores in high CO2 uptake.Phys. Chem. Chem. Phys., 2013, 15(7): 2523-2529. |
[25] | ZHOU J, LI W, ZHUO S P, et al.Carbon dioxide adsorption performance of N-doped zeolite Y template carbons.RSC Adv., 2012, 2(1): 161-167. |
[26] | WANG L, YANG R T.Significantly increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping.J. Phys. Chem. C, 2012, 116(1): 1099-1106. |
[27] | MANGUN C L, BENAK K R, ECONOMY J, et al.Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon, 2001, 39(12): 1809-1820. |
[28] | SHEN W Z, ZHANG S C, FAN W B, et al.Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture.J. Mater. Chem., 2011, 21(36): 14036-14040. |
[29] | HAO G P, JIN Z Y, LU A H.Porous carbon nanosheets with precisely tunablethickness and selective CO2 adsorption properties.Energy Environ. Sci., 2013, 6(12): 3740-3747. |
[30] | CHANDRA V, YU S U, KIM K S, et al.Highly selective CO2 capture on N-doped carbon produced by chemicalactivation of polypyrrole functionalized graphene sheets.Chem. Commun., 2012, 48(5): 735-737. |
[31] | SHEN Y M, BAI J F.A new kind CO2/CH4 separation material: open ended nitrogen doped carbon nanotubes formed by direct pyrolysis of metal organicframeworks.Chem. Commun., 2010, 46(8): 1308-1310. |
[32] | ZHAO Y X, SEREDYCH M, BANDOSZ T J.Superior performance of copper based MOF and aminatedgraphite oxide composites as CO2 adsorbents at room temperature.ACS Appl. Mater Interfaces, 2013, 5(11): 4951-4959. |
[33] | BABARAO R, DAI S, JIANG D E.Nitrogen-doped mesoporouscarbon for carbon capture-a molecular simulation study.J. Phys. Chem. C, 2012, 116(12):7106-7110. |
[34] | YU J Y, GUO M Y, ZHU G S, et al.Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol- melamine-formaldehyde resin.Microporous Mesoporous Mater., 2014, 190(8): 117-127. |
[35] | FU L L, QI G G, GIANNELIS E P, et al.Facile synthesis and application of a carbon foam with large mesopores.Phys. Chem. Chem. Phys., 2013, 15(44): 19134-19137. |
[36] | WHITE R J, ANTONIETTI M, TITIRICI M M, et al.Naturally inspired nitrogen doped porous carbon. J. Mater. Chem., 2009, 19(45): 8645-8650. |
[37] | OLEJNICZAK A, LEZANSKA M, LUKASZEWICZA J P, et al.Novel nitrogen-containing mesoporous carbons prepared from chitosan.J. Mater. Chem. A, 2013, 1(31): 8961-8967. |
[38] | SEVILLA M, FALCO C, FUERTES A B, et al.High-performance CO2 adsorbents from algae.RSC Adv., 2012, 2(33): 12792-12797. |
[39] | WOOD K N, HAYREA R O, PYLYPENKO S.Recent progress on nitrogen·carbon structures designed for use in energy and sustainability applications.Energy Environ. Sci., 2014, 7: 1212-1249. |
[40] | WANG J C, LIU Q.An ordered mesoporous aluminosilicateoxynitridetemplate to prepare N-incorporated ordered mesoporous carbon.J. Phys. Chem. C, 2007, 111(20): 7266-7272. |
[41] | YANG H W, YUAN Y Z, EDMAN TSANG S C. Nitrogen- enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chemical Engineering Journal, 2012, 185-186(5): 374-379. |
[42] | LI Q, YANG J P, ZHAO D Y, et al.Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2capture.Nano Res., 2010, 3(9): 632-642. |
[43] | WILKE A, WEBER J.Hierarchical nanoporous melamine resin sponges with tunable porosity-porosity analysis and CO2 adsorption properties.J. Mater. Chem., 2011, 21(14): 5226-5229. |
[44] | GUTIERREZ M C, CARRIAZO D, MONTE F D, et al.Deep eutectic solvents as both precursors and structure directing agents in thesynthesis of nitrogen doped hierarchical carbons highly suitable for CO2.capture.Energy Environ. Sci., 2011, 4(11): 3535-3544. |
[45] | HAO G P, LI W C, LU A H.Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with ahexagonal array of mesopores.Carbon, 2011, 49(12): 3762-3772. |
[46] | HAO G P, LI W C, LU A H. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc., 2011,133(29): 11378-11388. |
[47] | ZHU B J, LI K X, GUO Z X, et al.Nitrogen-enriched and hierarchically porous carbon macro-spheres-ideal for large-scale CO2 Capture.J. Mater. Chem. A, 2014, 2(15): 5481-5489. |
[48] | WANG J C, SENKOVSKA I, KASKEL S, et al.Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties.ACS Appl. Mater. Interfaces, 2013, 5(8): 3160-3167. |
[49] | CHEN H C, SUN F G, LONG D H, et al.Nitrogen doping effects on the physical and chemical properties of mesoporous carbon. J. Phys. Chem. C, 2013, 117(16): 8318-8328. |
[50] | TITRIRICI M M, WHITE R J, ZHAO L.Nitrogen-doped hydrothermal carbons.Green, 2012, 2(1): 25-40. |
[51] | FENG S S, LI W, ZHAO D Y, et al.Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture.Chem. Commun., 2014, 50(3): 329-331. |
[52] | MA X Y, CAO M H, HU C W, et al.Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J. Mater. Chem. A, 2013, 1(3): 913-918. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | GUO Ziyu, ZHU Yunzhou, WANG Li, CHEN Jian, LI Hong, HUANG Zhengren. Effect of Zn2+ Catalyst on Microporous Structure of Porous Carbon Prepared from Phenolic Resin/Ethylene Glycol [J]. Journal of Inorganic Materials, 2025, 40(5): 466-472. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||