Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (7): 681-686.DOI: 10.3724/SP.J.1077.2013.13553
• Orginal Article • Previous Articles Next Articles
WANG Hong-Jian, CAO Tian-Yu, SHI Yi-Xiang, CAI Ning-Sheng
Received:2013-10-25
Revised:2013-12-17
Published:2014-07-20
Online:2014-06-20
About author:WANG Hong-Jian. E-mail: whj05@mails.tsinghua.edu.cn
Supported by:CLC Number:
WANG Hong-Jian, CAO Tian-Yu, SHI Yi-Xiang, CAI Ning-Sheng. Research Development on Novel Anode of Solid Oxide Direct Carbon Fuel Cells[J]. Journal of Inorganic Materials, 2014, 29(7): 681-686.
Add to citation manager EndNote|Ris|BibTeX
| Metal | Melting point /℃ | Metal oxide | Oxide melting point /℃ |
|---|---|---|---|
| Sn | 231.9 | SnO2 | 1927 |
| Cu | 1083.2 | Cu2O | 1230 |
| Pb | 327.4 | PbO | 890 |
| In | 156.4 | In2O3 | 2000 |
| Bi | 271.3 | Bi2O3 | 817 |
| Sb | 630.5 | Sb2O3 | 655 |
Table 1 Melting point of metal and metal oxide[28]
| Metal | Melting point /℃ | Metal oxide | Oxide melting point /℃ |
|---|---|---|---|
| Sn | 231.9 | SnO2 | 1927 |
| Cu | 1083.2 | Cu2O | 1230 |
| Pb | 327.4 | PbO | 890 |
| In | 156.4 | In2O3 | 2000 |
| Bi | 271.3 | Bi2O3 | 817 |
| Sb | 630.5 | Sb2O3 | 655 |
| [1] | CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: fundamentals and recent developments. Journal of Power Sources, 2007, 167(2): 250-257. |
| [2] | 曹殿学,王贵领,吕艳卓. 燃料电池系统. 北京: 北京航空航天大学出版社, 2009: 304-323. |
| [3] | GÜR T M. Mechanistic modes for solid carbon conversion in high temperature fuel cells. Journal of The Electrochemical Society, 2010, 157(5): B751-B759. |
| [4] | CAI NING-SHENG, LI CHEN, SHI YI-XIANG. Research and development of solid oxide direct carbon fuel cell. Proceedings of the CSEE, 2011, 31(17): 112-120. |
| [5] | LI CHEN, SHI YI-XIANG, CAI NING-SHENG. An analysis of technical research advances in direct carbon fuel cell technology. Journal of Engineering for Thermal Energy & Power, 2007, 21(1): 1-5. |
| [6] | LI S, LEE A C, MITCHELL R E, et al. Direct carbon conversion in a helium fluidized bed fuel cell. Solid State Ionics, 2008, 179(27-32): 1549-1552. |
| [7] | ZAHRADNIK R L, ELIKAN L, ARCHER D H. A coal-burning Solid-electrolyte Fuel Cell Power Plant. // Young G J, Linden H R. Fuel Cell Systems, First edition. Washington D C: American Chemical Society, 1965, 47: 343-356. |
| [8] | NAKAGAWA N, ISHIDA M. Performance of an internal direct-oxidation carbon fuel-cell and its evaluation by graphic exergy analysis. Industrial & Engineering Chemistry Research, 1988, 27(7): 1181-1185. |
| [9] | IHARA M, MATSUDA K, SATO H, et al. Solid state fuel storage and utilization through reversible carbon deposition on an SOFC anode. Solid State Ionics, 2004, 175: 51-54. |
| [10] | HASEGAWA S, IHARA M. Reaction mechanism of solid carbon fuel in rechargeable direct carbon SOFCs with methane for charging. Journal of the Electrochemical Society, 2008, 155(1): B58-B63. |
| [11] | 李晨. 固体氧化物直接碳燃料电池机理及反应特性研究. 北京:清华大学博士学位论文, 2010. |
| [12] | GÜR T M, Huggins R A. Direct electrochemical conversion of carbon to electrical energy in a high temperature fuel cell. Journal of the Electrochemical Society, 1992, 139(10): 95-97. |
| [13] | LI C, SHI Y X, CAI N S. Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas. Journal of Power Sources, 2010, 195(15): 4660-4666. |
| [14] | BALASHOV, DUBOIS, HORNBOSTEL, et al. Direct Carbon Fuel Cells : Clean Electricity from Coal and Carbon Based Fuels. Direct Carbon Conversion Workshop, Palm Springs, 2005. |
| [15] | POINTON K, LAKEMAN B, IRVINE J T S, et al. The development of a carbon-air semi fuel cell. Journal of Power Sources, 2006, 162(2): 750-756. |
| [16] | JAIN S L, LAKEMAN B, POINTON K D, et al. Carbon-air fuel cell development to satisfy our energy demands. Ionics, 2007, 13: 413-416. |
| [17] | NABAE Y, POINTON K D, IRVINE J T S. Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte. Energy & Environment Science, 2008, 1: 148-155. |
| [18] | WILLIAM E T. High Temperature Fuel Cell Having a Palladium Film between the Anode and Electrolyte. US 3432352 A, 1969. |
| [19] | TAO T. Direct Carbon Conversion. Direct Carbon Fuel Cell Workshop, Pittsburg, PA, 2003. |
| [20] | TAO T. Introduction of Liquid Anode Solid Oxide Electrolyte Fuel Cell and Its Direct Energy Conversion Using Waste Plastics. Proceedings of the 9th, International Symposium Solid Oxide Fuel Cells, 2005, 1: 353-362. |
| [21] | 赵天从. 锑. 北京: 冶金工业出版社, 1987: 289-296. |
| [22] | YENTEKAKIS I V, DEBENEDETTI P G, COSTA B, et al. A novel fused metal anode solid electrolyte fuel-cell for direct coal-gasification: a steady-state model. Industrial & Engineering Chemistry Research, 1989, 28(9): 1414-1424. |
| [23] | TAO T, MCPHEE W, KOSLOWSKE M. Liquid tin anode SOFC for direct fuel conversion-impact of coal and JP-8 impurities. ECS Transactions, 2009, 25(2): 1115-1124. |
| [24] | JACOB K T. A new type of SOFC for conversion of high temperature heat to electricity without carnot limitation. ECS Transactions, 2011, 35(1): 573-582. |
| [25] | JAYAKUMAR A, LEE S, HORNES A, et al. A comparison of molten Sn and Bi for solid oxide fuel cell anodes. Journal of the Electrochemical Society, 2010, 157(3): B365-B369. |
| [26] | JAYAKUMAR A, VOHS J M, GORTE R J. Molten-metal electrodes for solid oxide fuel cells. Industrial & Engineering Chemistry Research, 2010, 49(21): 10237-10241. |
| [27] | JAYAKUMAR A, KÜNGAS R, ROYET S, et al. A direct carbon fuel cell with a molten antimony anode. Energy & Environmental Science, 2011, 4(10): 4133-4137. |
| [28] | ARKEL A E V, FLOOD E A. The electrical conductivity of molten oxides. Canadian Journal of Chemistry., 1953, 31: 1009-1019. |
| [29] | 沈兴. 差热、热重分析与非等温固相反应动力学. 北京: 冶金工业出版社, 1995: 168-169. |
| [30] | WANG H J, SHI Y X, CAI N S. Polarization characteristics of liquid antimony anode with smooth single-crystal solid oxide electrolyte. Journal of Power Sources, 2014, 245: 164-170. |
| [1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| [5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
| [6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
| [7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
| [8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
| [9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
| [10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
| [11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
| [12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
| [13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
| [14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
| [15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||