Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (9): 1022-1028.DOI: 10.15541/jim20240087
Special Issue: 【信息功能】介电、铁电、压电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
SHEN Hao1(), CHEN Qianqian1, ZHOU Boxiang1, TANG Xiaodong1, ZHANG Yuanyuan1,2(
)
Received:
2024-02-28
Revised:
2024-03-11
Published:
2024-09-20
Online:
2024-03-30
Contact:
ZHANG Yuanyuan, associate professor. E-mail: yyzhang@ee.ecnu.edu.cnAbout author:
SHEN Hao (1990-), male, Master candidate. E-mail: sh17855518188@163.com
Supported by:
CLC Number:
SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films[J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028.
Fig. 3 P-E hysteresis loops and I-E curves of Sr-PLZ-x thin films (a-e) and switching fields EAF and EFA as a function of Sr2+ doping content (f) Colorful figures are available on website
Fig. 4 Energy-storage properties of Sr-PLZ-x thin films (a, b) Variations of (a) EBDS, (b) Wre and η with Sr2+ doping content; (c) Wre and (d) η of Sr-PLZ-x thin films measured at different electric fields
[1] | HAO X H, ZHAI J W, KONG L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in Materials Science, 2014, 63: 1. |
[2] | WANG X W, YANG F, YU K X, et al. PbZrO3-based anti- ferroelectric thin films for high-performance energy storage: a review. Advanced Materials Technologies, 2023, 8(10): 2202044. |
[3] | ZHANG M H, FULANOVIC L, ZHAO C H, et al. Review on field-induced phase transitions in lead-free NaNbO3-based antiferroelectric perovskite oxides for energy storage. Journal of Materiomics, 2023, 9(1): 1. |
[4] | KO D L, HSIN T, LAI Y H, et al. High-stability transparent flexible energy storage based on PbZrO3/muscovite heterostructure. Nano Energy, 2021, 87: 106149. |
[5] | PALNEEDI H, PEDDIGARI M, HWANG G T, et al. High- performance dielectric ceramic films for energy storage capacitors: progress and outlook. Advanced Functional Materials, 2018, 28(42): 1803665. |
[6] | GUO B, JIN F, LI L, et al. Design strategies of high-performance lead-free electroceramics for energy storage applications. Rare Metals, 2024, 43(3): 853. |
[7] | CAI H H, YAN S G, ZHOU M X, et al. Significantly improved energy storage properties and cycling stability in La-doped PbZrO3 antiferroelectric thin films by chemical pressure tailoring. Journal of the European Ceramic Society, 2019, 39(15): 4761. |
[8] | AHN C W, AMARSANAA G, WON S S, et al. Antiferroelectric thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times. ACS Applied Materials & Interfaces, 2015, 7(48): 26381. |
[9] | GAO H C, HAO X H, ZHANG Q W, et al. Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films. Journal of Materials Science: Materials in Electronics, 2016, 27(10): 10309. |
[10] | ZOU K L, HE C H, YU Y X, et al. Ultrahigh energy efficiency and large discharge energy density in flexible dielectric nanocomposites with Pb0.97La0.02(Zr0.5SnxTi0.5-x)O3 antiferroelectric nanofillers. ACS Applied Materials & Interfaces, 2020, 12(11): 12847. |
[11] | LI Y Z, LIN J L, BAI Y, et al. Ultrahigh-energy storage properties of (PbCa)ZrO3 antiferroelectric thin films via constructing a pyrochlore nanocrystalline structure. ACS Nano, 2020, 14(6): 6857. |
[12] | PENG B L, ZHANG Q, LI X, et al. Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases. ACS Applied Materials & Interfaces, 2015, 7(24): 13512. |
[13] |
YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications. Progress in Materials Science, 2019, 102: 72.
DOI |
[14] | BAETTIG P, SCHELLE C F, LESAR R, et al. Theoretical prediction of new high-performance lead-free piezoelectrics. Chemistry of Materials, 2005, 17(6): 1376. |
[15] | YUAN Y, SUN B W, GUO M Y, et al. Antiferroelectric- ferroelectric phase transition and negative electrocaloric effect in alkaline-earth element doped PbZrO3 thin films. Journal of Alloys and Compounds, 2022, 899: 163165. |
[16] | BHARADWAJA S S N, SAHA S, BHATTACHARYYA S, et al. Dielectric properties of La-modified antiferroelectric PbZrO3 thin films. Materials Science and Engineering: B, 2002, 88(1): 22. |
[17] | BHARADWAJA S S N, LAHA A, HALDER S, et al. Reversible and irreversible switching processes in pure and lanthanum modified lead zirconate thin films. Materials Science and Engineering: B, 2002, 94(2/3): 218. |
[18] | PARUI J, KRUPANIDHI S B. Enhancement of charge and energy storage in Sol-Gel derived pure and La-modified PbZrO3thin films. Applied Physics Letters, 2008, 92(19): 192901. |
[19] | BHARADWAJA S S N, KRUPANIDHI S B. Study of La-modified antiferroelectric PbZrO3 thin films. Thin Solid Films, 2003, 423(1): 88. |
[20] | HAO X H, ZHAI J W, YAO X. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films. Journal of the American Ceramic Society, 2009, 92(5): 1133. |
[21] | HAO X H, ZHAI J W, ZHOU J, et al. Structure and electrical properties of PbZrO3 antiferroelectric thin films doped with barium and strontium. Journal of Alloys and Compounds, 2011, 509(2): 271. |
[22] | HAERTLING G H, LAND C E. Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications. Journal of the American Ceramic Society, 1971, 54: 1. |
[23] | DAI X H, VIEHLAND D. Effects of lanthanum modification on the antiferroelectric-ferroelectric stability of high zirconium-content lead zirconate titanate. Journal of Applied Physics, 1994, 76(6): 3701. |
[24] | BREVAL E, WANG C, DOUGHERTY J P, et al. PLZT phases near lead zirconate: 2. determination by capacitance and polarization. Journal of the American Ceramic Society, 2006, 89(12): 3681. |
[25] | PAN W Y, ZHANG Q M, BHALLA A, et al. Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics. Journal of the American Ceramic Society, 1989, 72(4): 571. |
[26] | HAO X H, ZHAI J W. Electric-field tunable electrocaloric effects from phase transition between antiferroelectric and ferroelectric phase. Applied Physics Letters, 2014, 104(2): 022902. |
[27] | ZHANG T D, LI W L, HOU Y F, et al. High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films. Journal of the American Ceramic Society, 2017, 100(7): 3080. |
[28] | PAN Z B, WANG P, HOU X, et al. Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance. Advanced Energy Materials, 2020, 10(31): 2001536. |
[29] | JIANG S L, ZHANG L, ZHANG G Z, et al. Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceramics International, 2013, 39(5): 5571. |
[30] | LIU X H, LI Y, SUN N N, et al. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors. Inorganic Chemistry Frontiers, 2020, 7(3): 756. |
[31] | ZHANG Q F, DAN Y, CHEN J, et al. Effects of composition and temperature on energy storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics. Ceramics International, 2017, 43(14): 11428. |
[32] | ZHANG T D, ZHAO Y, LI W L, et al. High energy storage density at low electric field of ABO3 antiferroelectric films with ionic pair doping. Energy Storage Materials, 2019, 18: 238. |
[33] | LOU X J, WANG J. Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue. Applied Physics Letters, 2010, 96(10): 102906. |
[34] | ZHOU L, ZIMMERMANN A, ZENG Y P, et al. Fatigue of field- induced strain in antiferroelectric Pb0.97La0.02(Zr0.77Sn0.14Ti0.09)O3 ceramics. Journal of the American Ceramic Society, 2004, 87(8): 1591. |
[35] | LIU X, ZHAO Y Y. Research progress of antiferroelectric energy storage ceramics. Electronic Components and Materials, 2020, 39(11): 55. |
[1] | SHI Ruijian, LEI Junwei, ZHANG Yi, XIE Aiwen, ZUO Ruzhong. Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties [J]. Journal of Inorganic Materials, 2024, 39(4): 423-431. |
[2] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[3] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[4] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[5] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[6] | XIAO Shulin, DAI Zhonghua, LI Dingyan, ZHANG Fanbo, YANG Lihong, REN Xiaobing. Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 520-526. |
[7] | YE Fen, JIANG Xiangping, CHEN Yunjing, HUANG Xiaokun, ZENG Renfen, CHEN Chao, NIE Xin, CHENG Hao. Dielectric and Energy Storage Property of (0.96NaNbO3-0.04CaZrO3)-xFe2O3 Antiferroelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 499-506. |
[8] | WU Ming, XIAO Yanan, LI Huaqiang, LIU Yongbin, GAO Jinghui, ZHONG Lisheng, LOU Xiaojie. Negative Electrocaloric Effects in Antiferroelectric Materials: a Review [J]. Journal of Inorganic Materials, 2022, 37(4): 376-386. |
[9] | ZHAO Wei, XU Yang, WAN Yingjie, CAI Tianxun, MU Jinxiao, HUANG Fuqiang. Metal Cyanamides/Carbodiimides: Structure, Synthesis and Electrochemical Energy Storage Performance [J]. Journal of Inorganic Materials, 2022, 37(2): 140-151. |
[10] | LI Zehui,TAN Meijuan,ZHENG Yuanhao,LUO Yuyang,JING Qiushi,JIANG Jingkun,LI Mingjie. Application of Conductive Metal Organic Frameworks in Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(7): 769-780. |
[11] | YU Shouwu, ZHAO Zewen, ZHAO Jinjin, XIAO Shujuan, SHI Yan, GAO Cunfa, SU Xiao, HU Yuxiang, ZHAO Zhisheng, WANG Jie, WANG Lianzhou. Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells [J]. Journal of Inorganic Materials, 2020, 35(6): 623-632. |
[12] | WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2020, 35(4): 431-438. |
[13] | MA Li-Na,SHI Chuan,ZHAO Ning,BI Zhi-Jie,GUO Xiang-Xin,HUANG Yu-Dong. Bacterial Cellulose Based Nano-biomaterials for Energy Storage Applications [J]. Journal of Inorganic Materials, 2020, 35(2): 145-157. |
[14] | XU Xiao-Hong, TIAN Jiang-Zhou, WU Jian-Feng, ZHANG Qian-Kun, JIN Hao, DU Yi-Xin. Fe2O3 on In-situ Synthesized SiCw/SiC Composite Ceramics for Solar Thermal Energy Storage [J]. Journal of Inorganic Materials, 2019, 34(10): 1103-1108. |
[15] | DOU Run-Pu, LU Xiao-Peng, YANG Ling, WANG Hua, ZHOU Chang-Rong, XU Ji-Wen. Influence of A-site Sm Doping on Structural and Electrical Property of 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 Lead Free Ceramics [J]. Journal of Inorganic Materials, 2018, 33(5): 528-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||