Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (4): 374-382.DOI: 10.15541/jim20230432
Special Issue: 【能源环境】氢能材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
YANG Bo1,2,3(), LÜ Gongxuan1(
), MA Jiantai3
Received:
2023-09-22
Revised:
2023-11-23
Published:
2024-04-20
Online:
2023-12-04
Contact:
LÜ Gongxuan, professor. E-mail: gxlu@lzb.ac.cnAbout author:
YANG Bo (1989–), male, PhD candidate. E-mail: yangbo18@licp.cas.cn
Supported by:
CLC Number:
YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode[J]. Journal of Inorganic Materials, 2024, 39(4): 374-382.
Fig. 1 Synthesis diagram of electrodes (a), SEM images (b-d) and XRD patterns (e-g) of Co precursor/NF (b, e), CoP/NF (c, f), and NiFeOH/CoP/NF-200s (d, g)
Fig. 3 HER electrocatalytic properties of bare NF, Co precursor/NF, CoP/NF, and NiFeOH/CoP/NF-200s (a) LSV curves; (b) Corresponding Tafel plots; (c) Nyquist plots at -0.20 V (vs. RHE); (d) Chronopotentiometry plots of CoP/NF and NiFeOH/CoP/NF-200s at the current density of -10 mA/cm2
Fig. 4 OER electrocatalytic properties of bare NF, Co precursor/NF, CoP/NF, and NiFeOH/CoP/NF-200s (a) LSV curves; (b) Corresponding Tafel plots; (c) Nyquist plots at the potential of 1.60 V (vs. RHE); (d) Chronopotentiometry plots of CoP/NF and NiFeOH/CoP/NF-200s at the current density of 10 mA/cm2
Fig. 5 Electrocatalytic overall water splitting properties of NiFeOH/CoP/NF-200s||NiFeOH/CoP/NF-200s two electrode system and hydrogen production efficiency of the photovoltaic-electrocatalytic system consisting of two electrode cell and GaAs solar cell (a) LSV curve; (b) Long term chronopotentiometry plot at current density of 10 mA/cm2; (c) Galvanostatic electrocatalytic hydrogen and oxygen evolution curves, Faradic efficiency (FE), and electricity to hydrogen efficiency curves (ETH); (d) Hydrogen, oxygen evolution and corresponding solar to hydrogen efficiency curves of a photovoltaic-electrocatalytic system consisting of NiFeOH/CoP/NF-200s||NiFeOH/CoP/NF-200s electrocatalytic cell and GaAs solar cell
Fig. S1 TEM characterization of Co precursor/NF, CoP/NF, and NiFeOH/CoP/NF-200s (a-c) TEM images of (a) Co precursor/NF, (b) CoP/NF, and (c) NiFeOH/CoP/NF-200s; (d-f) HRTEM images of (d) Co precursor/NF, (e) CoP/NF, and (f) NiFeOH/CoP/NF-200s; (g, h) SAED images in crystalline (1) and amorphous (2) areas of (f); (i) HAADF-STEM image and (j) Ni, Fe, Co, P, O element mappings of NiFeOH/CoP/NF-200s
Fig. S2 Cathode LSV curves of CoP/NF, and NiFeOH/CoP/NF-xs prepared with different electrodeposition time (a), and current density difference versus scan rate to calculate the double layer capacities (Cdls) of bare NF, Co precursor/NF, CoP/NF, and NiFeOH/CoP/NF-200s (b)
Fig. S3 Anode LSV curves of CoP/NF and NiFeOH/CoP/NF-xs prepared with different electrodeposition time (a), XRD and SEM characterization of NiFeOH/CoP/NF-200s after cathode and anode chronopotentiometry test (b-d) (b) XRD spectra after HER and OER; (c) SEM image after HER; (d) SEM image after OER
[1] |
YANG B, ZHEN W L, MA J T, et al. Corrosion inhibition and stability enhancement of cobalt phosphide in aqueous solution by coating TiO2 layer. International Journal of Hydrogen Energy, 2023, 48(94): 36784.
DOI URL |
[2] | 叶朕, 罗皓霖, 江治, 等. 光催化还原二氧化碳全反应的研究进展. 分子催化, 2023, 37(2): 174. |
[3] |
ZHEN W L, NING X F, YANG B J, et al. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Applied Catalysis B-Environmental, 2018, 221: 243.
DOI URL |
[4] | 周飞. 石墨相氮化碳在光催化苯甲醛氧化耦合制氢领域的研究进展. 分子催化, 2023, 37(4): 397. |
[5] |
MIN S X, LU G X. Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction. Journal of Physical Chemistry C, 2011, 115(28): 13938.
DOI URL |
[6] | 李博远, 何凤贵, 张明慧, 等. 金属-有机骨架材料的改性方法及其光催化制氢应用. 分子催化, 2023, 37(1): 94. |
[7] |
TIAN B, WU Y Q, LU G X. Metal-free plasmonic boron phosphide/graphitic carbon nitride with core-shell structure photocatalysts for overall water splitting. Applied Catalysis B-Environmental, 2021, 280: 119410.
DOI URL |
[8] |
KONG C, MIN S X, LU G X. Dye-sensitized NiSx catalyst decorated on graphene for highly efficient reduction of water to hydrogen under visible light irradiation. ACS Catalysis, 2014, 4(8): 2763.
DOI URL |
[9] | 张志艳, 石琛琛, 张潇, 等. 咔唑基共价有机框架用于光催化析氢. 分子催化, 2023, 37(4): 367. |
[10] |
JIA M Z, LU G X. 750 nm visible light-driven overall water splitting to H2 and O2 over boron-doped Zn3As2photocatalyst. Applied Catalysis B-Environmental, 2023, 338: 123045.
DOI URL |
[11] |
ZHANG X Q, LU G X, NING X F, et al. Boron substitution enhanced activity of BxGa1-xAs/GaAs photocatalyst for water splitting. Applied Catalysis B-Environmental, 2021, 300: 120690.
DOI URL |
[12] | 侯慧霞, 张靖怡, 蔡平龙, 等. 超声驱动制备Au/CdS催化剂及其高效光催化产氢. 分子催化, 2022, 36(2): 129. |
[13] |
NING X F, LU G X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale, 2020, 12(3): 1213.
DOI PMID |
[14] | 王春艳, 武文慧, 史晓敏, 等. 不同形貌ZnS基纳米复合材料的制备及光催化性能. 分子催化, 2021, 35(2): 141. |
[15] |
DONG J L, ZHANG X Q, LU G X, et al. Generation of enhanced stability of SnO/In(OH)3/InP for photocatalytic water splitting by SnO protection layer. Frontiers in Energy, 2021, 15(3): 710.
DOI |
[16] |
WU J, YU L B, LIU S S, et al. NiN4/Cr embedded graphene for electrochemical nitrogen fixation. Journal of Inorganic Materials, 2022, 37(10): 1141.
DOI URL |
[17] | ZHANG X Q, LU GX, WU Y Q, et al. TiO2protection layer and well-matched interfaces enhance the stability of Cu2ZnSnS4/ CdS/TiO2 for visible light driven water splitting. Catalysis Science & Technology, 2021, 11(16): 5505. |
[18] |
WANG M, LU G X. Improved light harvesting and efficiency for overall water splitting by embedding TiO2 transition layer in GaP/Ga2O3/Ga2Se3multijunction photocatalyst. Solar RRL, 2021, 5(6): 2000619.
DOI URL |
[19] | 赵茂旭, 张天琦, 段婷婷, 等. 电催化醇选择性氧化为醛酮的研究进展. 分子催化, 2021, 35(6): 583. |
[20] | 乔劲松, 韩苗苗. 多孔二元过渡金属纳米片阵列电极制备及电催化析氢研究. 分子催化, 2021, 35(5): 449. |
[21] |
YU F, ZHOU H Q, HUANG Y F, et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nature Communications, 2018, 9: 2551.
DOI PMID |
[22] |
POPCZUN E J, READ C G, ROSKE C W, et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angewandte Chemie International Edition, 2014, 53(21): 5427.
DOI URL |
[23] |
LIU Q, TIAN J Q, CUI W, et al. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(26): 6710.
DOI URL |
[24] |
CHANG J F, XIAO Y, XIAO M L, et al. Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution. ACS Catalysis, 2015, 5(11): 6874.
DOI URL |
[25] |
LI X Z, FANG Y Y, LI F, et al. Ultrafine Co2P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4(40): 15501.
DOI URL |
[26] |
AHNT H S, BARD A J. Assessment of the stability and operability of cobalt phosphide electrocatalyst for hydrogen evolution. Analytical Chemistry, 2017, 89(16): 8574.
DOI PMID |
[27] |
ZHANG Y, GAO L, HENSEN, E J M, et al. Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Letters, 2018, 3(6): 1360.
DOI URL |
[28] |
HA D H, HAN B H, RISCH M, et al. Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy, 2016, 29: 37.
DOI URL |
[29] |
LI D, BAYDOUN H, VERANI C N, et al. Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society, 2016, 138(12): 4006.
DOI PMID |
[30] |
WANG F L, ZHOU Y N, LV J Y, et al. Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density. International Journal of Hydrogen Energy, 2022, 47(2): 1016.
DOI URL |
[31] |
SU L, CUI X Z, HE T, et al. Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chemical Science, 2019, 10(7): 2019.
DOI PMID |
[32] |
MAI W S, CUI Q, ZHANG Z Q, et al. CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni foam for efficient overall water splitting. ACS Applied Energy Materials, 2020, 3(8): 8075.
DOI URL |
[33] |
HOSONO E, FUJIHARA S, HONMA I, et al. Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. Journal of Materials Chemistry, 2005, 15(19): 1938.
DOI URL |
[34] |
LI Q, WANG YC, ZENG J, et al. Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2evolution. Chinese Chemical Letters, 2021, 32(11): 3355.
DOI URL |
[35] | CHEN L, WANG Y P, ZHAO X, et al. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. Journal of Materials Science & Technology, 2022, 110: 128. |
[36] |
LIU Y, FENG Q G, LIU W, et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy, 2021, 81: 105641.
DOI URL |
[37] |
MASIKHWA T M, DANGBEGNON J K, BELLO A, et al. Preparation and electrochemical investigation of the cobalt hydroxide carbonate/activated carbon nanocomposite for supercapacitor applications. Journal of Physics and Chemistry of Solids, 2016, 88: 60.
DOI URL |
[38] |
HUANG G J, LIANG W L, WU Y L, et al. Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium. Journal of Catalysis, 2020, 390: 23.
DOI URL |
[39] |
ZHANG H, WU J B, ZHAI C X, et al. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes. Nanotechnology, 2008, 19(3): 035711.
DOI URL |
[40] |
LI Y, LI H X, CAO K Z, et al. Electrospun three dimensional Co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution. Energy Storage Materials, 2018, 12: 44.
DOI URL |
[41] |
LI Y, MALIK M A, O'BRIEN P. Synthesis of single-crystalline CoP nanowires by a one-pot metal-organic route. Journal of the American Chemical Society, 2005, 127(46): 16020.
PMID |
[42] |
PENG J H, PENG K. Rational design of amorphous NiFe-LDH/ Co3O4-P heterostructure bifunctional electrocatalysts for overall water splitting. Materials Chemistry and Physics, 2023, 297: 127412.
DOI URL |
[43] |
PAN Y, HU W H, LIU D P, et al. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3(24): 13087.
DOI URL |
[44] |
YOON H, SONG H J, JU B B, et al. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Research, 2020, 13(9): 2469.
DOI |
[45] |
ZHANG H J, LI X P, HÄHNEL A, et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Advanced Functional Materials, 2018, 28(14): 1706847.
DOI URL |
[46] |
WANG X B, WANG J L, LIAO J, et al. Surface engineering of superhydrophilic Ni2P@NiFe LDH heterostructure toward efficient water splitting electrocatalysis. Applied Surface Science, 2022, 602: 154287.
DOI URL |
[47] |
XIAO L, BAO W W, ZHANG J J, et al. Interfacial interaction between NiMoP and NiFe-LDH to regulate the electronic structure toward high-efficiency electrocatalytic oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47(15): 9230.
DOI URL |
[48] |
ELADGHAM E H, RODENE D D, SARKAR R, et al. Electrocatalytic activity of bimetallic Ni-Mo-P nanocrystals for hydrogen evolution reaction. ACS Applied Nano Materials, 2020, 3(8): 8199.
DOI URL |
[49] |
RYU J, JUNG N, JANG J H, et al. In situ transformation of hydrogen-evolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with co-oxo/ hydroxo molecular units. ACS Catalysis, 2015, 5(7): 4066.
DOI URL |
[50] | 鄢维, 李渊. 基于尿素电合成反应的电催化剂研究进展. 分子催化, 2023, 37(2): 187. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[5] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[6] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[7] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[8] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[9] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[10] | LIU Jian, WANG Lingkun, XU Baoliang, ZHAO Qian, WANG Yaoxuan, DING Yi, ZHANG Shengtai, DUAN Tao. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910-916. |
[11] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[12] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[13] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[14] | LI Yue, ZHANG Xuliang, JING Fangli, HU Zhanggui, WU Yicheng. Growth and Property of Ce3+-doped La2CaB10O19 Crystal [J]. Journal of Inorganic Materials, 2023, 38(5): 583-588. |
[15] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||