Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (4): 383-389.DOI: 10.15541/jim20230457
Special Issue: 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Zhaoyang1(), QIN Peng2, JIANG Yin1, FENG Xiaobo1, YANG Peizhi1(
), HUANG Fuqiang3(
)
Received:
2023-10-07
Revised:
2023-12-13
Published:
2024-04-20
Online:
2023-12-25
Contact:
YANG Peizhi, professor. E-mail: pzhyang@hotmail.com;About author:
WANG Zhaoyang (1999-), male, Master candidate. E-mail: wang1143882613@163.com
Supported by:
CLC Number:
WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation[J]. Journal of Inorganic Materials, 2024, 39(4): 383-389.
Fig. 3 XRD, XPS, EPR, and BET characterizations of L-TiO2 and L-Ru@TiO2 (a) XRD patterns; (b) Ru3d XPS spectrum of L-Ru@TiO2; (c) O1s, and (d) Ti2p XPS spectra; (e) EPR spectra; (f) Nitrogen adsorption and desorption isotherms and corresponding pore size distribution curves. 1 Gs=10-4 T
Fig. 4 Morphology characterization of L-TiO2 and L-Ru@TiO2 (a,b,d,e) TEM images of (a, b) L-TiO2 and (d, e) L-Ru@TiO2; (c, f) HRTEM images of (c) L-TiO2 and (f) L-Ru@TiO2 with insets showing lattice fringes of TiO2 (105); (g, h) HAADF images and (i) element distributions for L-Ru@TiO2
Fig. 5 Photoelectric properties of L-TiO2 and L-Ru@TiO2 (a) UV-Vis absorption spectra; (b) PL spectra; (c) Transient photocurrent responses; (d) Work functions
Fig. 6 Catalytic degradation performance of L-TiO2 and L-Ru@TiO2 (a) TC degradation and (b) TC photodegradation kinetics curves of photocatalytic raw materials TiO2, L-TiO2 and L-Ru@TiO2 under simulated sunlight; (c, d) Photocatalytic degradation efficiencies of TC by L-Ru@TiO2 at different (c) temperatures and (d) wavelengths; (e, f) Photocatalytic degradation efficiencies of TC in active species trapping experiment by L-Ru@TiO2 (Initial conditions: AO 1 mmol/L, LA 0.5 mmol/L)
[1] |
ZHAO Y, YANG Q, ZHOU X, et al. Antibiotic resistome in the livestock and aquaculture industries: status and solutions. Critical Reviews in Environmental Science and Technology, 2021, 51: 2159.
DOI URL |
[2] | WU Y, FENG P, LI R, et al. Progress in microbial remediation of antibiotic-residue contaminated environment. Chinese Journal of Biotechnology, 2019, 35(11): 2133. |
[3] |
ZHOU Y W, LI W B, KUMAR V, et al. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: challenges and perspective. Environmental Research, 2022, 211: 113075.
DOI URL |
[4] |
RAMAMURTHY R, MEHTA C H, NAYAK U Y. Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications. World Journal of Microbiology & Biotechnology, 2021, 37(8): 139.
DOI |
[5] |
RUSSELL J N, YOST C K. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere, 2021, 263: 128177.
DOI URL |
[6] |
LAN J, WANG Y, HUANG B. et al. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Advances, 2021, 3(16): 4646.
DOI PMID |
[7] |
WANG X Y, JIANG J J, MA Y H, et al. Tetracycline hydrochloride degradation over manganese cobaltate (MnCo2O4) modified ultrathin graphitic carbon nitride (g-C3N4) nanosheet through the highly efficient activation of peroxymonosulfate under visible light irradiation. Journal of Colloid and Interface Science, 2021, 600: 449.
DOI URL |
[8] |
CAO Y, LEI X Y, CHEN Q L, et al. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4. Journal of Photochemistry and Photobiology A-Chemistry, 2018, 364: 794.
DOI URL |
[9] |
ZHU W T, YU X C, LIAO J Q, et al. Photocatalytic activity of tetracycline hydrochloride in mariculture wastewater degraded by CuO/Bi2O3 under visible light. Separation Science and Technology, 2021, 56(17): 2930.
DOI URL |
[10] |
TANG M, XIA Y W, YANG D X, et al. Ag decoration and SnO2 coupling modified anatase/rutile mixed crystal TiO2 composite photocatalyst for enhancement of photocatalytic degradation towards tetracycline hydrochloride. Nanomaterials, 2022, 12(5): 873.
DOI URL |
[11] |
SABRI M, HABIBI-YANGJEH A, KHATAEE A. Nanoarchitecturing TiO2/NiCr2O4 p-n heterojunction photocatalysts for visible- light-induced activation of persulfate to remove tetracycline hydrochloride. Chemosphere, 2022, 300: 134594.
DOI URL |
[12] |
WANG C C, WANG X, LIU W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of- the-art review. Chemical Engineering Journal, 2020, 391: 123601.
DOI URL |
[13] |
WU S Q, HU H Y, LIN Y, et al. Visible light photocatalytic degradation of tetracyclineover TiO2. Chemical Engineering Journal, 2020, 382: 122842.
DOI URL |
[14] |
YU X, HUANG J L, ZHAO J J, et al. Efficient visible light photocatalytic antibiotic elimination performance induced by nanostructured Ag/AgCl@Ti3+-TiO2 mesocrystals. Chemical Engineering Journal, 2021, 403: 126359.
DOI URL |
[15] |
SAOTHAYANUN T, SIRINAKORRN T, OGAW M. Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues. Frontiers in Energy, 2021, 15(3): 631.
DOI |
[16] |
NONG S Y, DONG W J, YIN J W, et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. Journal of the American Chemical Society, 2018, 140(17): 5719.
DOI URL |
[17] |
ZHENG Q, HUANG L, ZHANG Y, et al. Unexpected highly reversible topotactic CO2 sorption/desorption capacity for potassium dititanate. Journal of Materials Chemistry A, 2016, 4(33): 12889.
DOI URL |
[18] |
WU D, LI C, KONG Q S, et al. Photocatalytic activity of Lu3+/TiO2 prepared by ball milling method. Journal of Rare Earths, 2018, 36(8): 819.
DOI URL |
[19] | NAKATO T, IWATA Y, KURODA K, et al. Preparation of an intercalation compound of layered titanic acid H2Ti4O9 with methylene-blue. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1992, 13(3): 249. |
[20] |
DING Q Q, ZHANG Y X, WANG G Z, et al. Enhanced photocatalytic activity of a hollow TiO2-Au-TiO2 sandwich structured nanocomposite. RSC Advances, 2016, 6(23): 18958.
DOI URL |
[21] |
WU D, WANG H B, HUANG H, et al. Ambient electrochemical N2 reduction to NH3 under alkaline conditions enabled by a layered K2Ti4O9 nanobelt. Chemical Communications, 2019, 55(52): 7546.
DOI URL |
[22] |
RIAZ M S, YUAN X T, ZHAO Y T, et al. Porous NiCo2S4/Co9S8 microcubes templated by sacrificial ZnO spheres as an efficient bifunctional oxygen electrocatalyst. Advanced Sustainable Systems, 2019, 3(5): 1800167.
DOI URL |
[23] |
UVAROV V, POPOV I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Materials Characterization, 2013, 85: 111.
DOI URL |
[24] |
SIMS M T, ABBOTT L C, GOODBY J W. Shape segregation in molecular organisation: a combined X-ray scattering and molecular dynamics study of smectic liquid crystals. Soft Matter, 2019, 15(38): 7722.
DOI PMID |
[25] | HAMZAH N, NORDIN N M, NADZRI A H A. Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media. Applied Catalysis A-General, 2012, 419: 133. |
[26] |
LIN X H, YANG K, SI R R, et al. Photo-assisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Applied Catalysis B-Environmental, 2014, 147: 585.
DOI URL |
[27] |
XU X L, LIU L, TONG Y Y, et al. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catalysis, 2021, 11(9): 5762.
DOI URL |
[28] |
SBOUI M, LACHHEB H, SWAMINATHAN M, et al. Low-temperature deposition and crystallization of RuO2/TiO2 on cotton fabric for efficient solar photocatalytic degradation of o-toluidine. Cellulose, 2022, 29(2): 1189.
DOI |
[29] |
LI C, JANG H, KIM M G, et al. Ru-incorporated oxygen-vacancy- enriched MoO2 electrocatalysts for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2022, 307: 121204.
DOI URL |
[30] |
MA Y N, DENG Z P, LI Z P, et al. Adsorption characteristics and mechanism for K2Ti4O9 whiskers removal of Pb(II), Cd(II), and Cu(II) cations in wastewater. Journal of Environmental Chemical Engineering, 2021, 9(5): 106236.
DOI URL |
[31] |
ZHANG J.W, WANG D, SHI S Q, et al. Synthesis and photocatalytic activity of Cu2O hollow nanospheres/TiO2 nanosheets by an in-situ water-bath method. Journal of Alloys and Compounds, 2022, 899: 163252.
DOI URL |
[32] |
HE B W, WANG Z L, XIAO P, et al. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Advanced Materials, 2022, 34(38): 2203225.
DOI URL |
[33] |
JIANG Y, WANG Z Y, ZHOU Q H, et al. Highly effective ruthenium-doped mesoporous Ti1-xRuxO2-y crystals for photocatalytic tetracycline degradation. Journal of Materials Chemistry C, 2023, 11(32): 11027.
DOI URL |
[34] |
CAHEN D, KAHN A. Electron energetics at surfaces and interfaces: concepts and experiments. Advanced Materials, 2003, 15(4): 271.
DOI URL |
[35] |
LI Q, WANG H L, ZHANG M, et al. Suppressive strong metal- support interactions on ruthenium/TiO2 promote light-driven photothermal CO2 reduction with methane. Angewandte Chemie International Edition, 2023, 62(19): e202300129.
DOI URL |
[36] | ZHOU X P, DONG J C, ZHAO Y, et al. Synergy of photo- and photothermal-catalytic synthesis of methyl propionate from ethylene and carbon dioxide over B-TiO2/Ru. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 9255. |
[37] |
LWIN H M, ZHAN W Q, SONG S X, et al. Visible-light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2heterojunction nanocatalyst. Chemical Physics Letters, 2019, 736: 136806.
DOI URL |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[3] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[4] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[5] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[6] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[7] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[8] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[9] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[10] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[11] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[12] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[13] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[14] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
[15] | AN Weijia, LI Jing, WANG Shuyao, HU Jinshan, LIN Zaiyuan, CUI Wenquan, LIU Li, XIE Jun, LIANG Yinghua. Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy [J]. Journal of Inorganic Materials, 2021, 36(6): 615-622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||