Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (12): 1339-1347.DOI: 10.15541/jim20240191
Special Issue: 【能源环境】钙钛矿(202412); 【能源环境】太阳能电池(202412)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Yu1,2(), XIONG Hao2, HUANG Xiaokun3, JIANG Linqin2(
), WU Bo1(
), LI Jiansheng3, YANG Aijun3
Received:
2024-04-15
Revised:
2024-07-10
Published:
2024-07-26
Online:
2024-07-26
Contact:
JIANG Linqin, professor. E-mail: linqinjiang@fjjxu.edu.cn;About author:
WANG Yu (1999-), male, Master candidate. E-mail: 719351445@qq.com
Supported by:
CLC Number:
WANG Yu, XIONG Hao, HUANG Xiaokun, JIANG Linqin, WU Bo, LI Jiansheng, YANG Aijun. Regulation of Low-dose Stannous Iso-octanoate for Two-step Prepared Sn-Pb Alloyed Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2024, 39(12): 1339-1347.
Fig. 4 Optical properties and energy levels of different Sn-Pb alloyed perovskite films (a) UV-VIS-NIR spectra; (b) UPS spectra; (c) Tauc plots; (d) Energy levels of VBM, CBM, and Fermi derived from the UPS spectra
Fig. 5 Photovoltaic performance and stability of PSC-0.10SF and PSC-0.030SO devices (a) Structure diagram of Sn-Pb alloyed perovskite solar cell; (b) J-V curves of the best-performance PSCs fabricated with SnF2 and SnOct2; (c) Stability of unencapsulated PSCs stored in the N2 glove box for 50 d; (d) Stability of unencapsulated PSCs stored in air for 20 d
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
PSC-0.10SF | 0.628±0.021 | 23.17±2.24 | 73.76±4.77 | 10.73±0.89 |
PSC-0.015SO | 0.698±0.004 | 26.45±0.66 | 75.03±3.05 | 13.86±0.48 |
PSC-0.030SO | 0.728±0.009 | 28.64±0.58 | 80.83±0.57 | 16.86±0.38 |
PSC-0.045SO | 0.701±0.011 | 27.67±0.79 | 77.34±2.59 | 15.01±0.73 |
Table S1 Average parameters of 10 Sn-Pb alloyed PSC devices with different additive
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
PSC-0.10SF | 0.628±0.021 | 23.17±2.24 | 73.76±4.77 | 10.73±0.89 |
PSC-0.015SO | 0.698±0.004 | 26.45±0.66 | 75.03±3.05 | 13.86±0.48 |
PSC-0.030SO | 0.728±0.009 | 28.64±0.58 | 80.83±0.57 | 16.86±0.38 |
PSC-0.045SO | 0.701±0.011 | 27.67±0.79 | 77.34±2.59 | 15.01±0.73 |
Fig. S5 Internal defects of different Sn-Pb alloyed perovskite films (a, b) I-V curves of FTO/SnO2/FAxMA1-xPb0.7Sn0.3InBr1-n/PCBM/Ag; (c) EIS plots; (d) Leakage current diagram
[1] | CHUNG I, LEE B, HE J, et al. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399):486. |
[2] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(170):6050.
DOI PMID |
[3] | SNAITH H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. The Journal of Physical Chemistry Letters, 2013, 4(21):3623. |
[4] |
GRÄTZEL M. The light and shade of perovskite solar cells. Nature Materials, 2014, 13(9):838.
DOI PMID |
[5] | LIANG Z, ZHANG Y, XU H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624(7992):557. |
[6] | LIAO W, ZHAO D, YU Y, et al. Fabrication of efficient low bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. Journal of the American Chemical Society, 2016, 138(38):12360. |
[7] | HU S, OTSUKA K, MURDEY R, et al. Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells. Energy and Environmental Science, 2022, 15: 2096. |
[8] | LIN R, XU J, WEI M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603(7899):73. |
[9] |
LIU C, FAN J, LI H, et al. Highly efficient perovskite solar cells with substantial reduction of lead content. Scientific Reports, 2016, 6(1):35705.
DOI PMID |
[10] | ZHU L, YUH B, SCHOEN S, et al. Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells. Nanoscale, 2016, 8(14):7621. |
[11] | LIAN X, CHEN J, ZHANG Y, et al. Highly efficient Sn/Pb binary perovskite solar cell via precursor engineering: a two-step fabrication process. Advanced Functional Materials, 2019, 29(5):1807024. |
[12] | ZHU T, YANG Y, GONG X. Recent advancements and challenges for low-toxicity perovskite materials. ACS Applied Materials & Interfaces, 2020, 12(24):26776. |
[13] | YANG Z, RAJAGOPAL A, CHUEH C C, et al. Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Advanced Materials, 2016, 28(40):8990. |
[14] | SONG T B, YOKOYAMA T, STOUMPOS C C, et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. Journal of the American Chemical Society, 2017, 139(2):836. |
[15] |
KE W, KANATZIDIS M G. Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 2019, 10(1):965.
DOI PMID |
[16] | LEE S J, SHIN S S, KIM Y C, et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. Journal of the American Chemical Society, 2016, 138(12):3974. |
[17] | YU B B, XU L, LIAO M, et al. Synergy effect of both 2, 2, 2-trifluoroethylamine hydrochloride and SnF2 for highly stable FASnI3-xClx perovskite solar cells. Solar RRL, 2019, 3(3):1800290. |
[18] | XIAO M, GU S, ZHU P, et al. Tin-based perovskite with improved coverage and crystallinity through tin-fluoride-assisted heterogeneous nucleation. Advanced Optical Materials, 2018, 6(1):1700615. |
[19] | WANG F, JIANG X, CHEN H, et al. 2D-Quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule, 2018, 2(12):2732. |
[20] | CAO D H, STOUMPOS C C, YOKOYAMA T, et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites. ACS Energy Letters, 2017, 2(5):982. |
[21] | ZHAO Z, GU F, WANG C, et al. Orientation regulation of photoactive layer in tin-based perovskite solar cells with allylammonium cations. Solar RRL, 2020, 4(10):2000315. |
[22] | DAI X, ZHANG L, QIAN Y, et al. Controlling vertical composition gradients in Sn-Pb mixed perovskite solar cells via solvent engineering. Journal of Inorganic Materials, 2023, 38(9):1089. |
[23] | TAI Q, GUO X, TANG G, et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angewandte Chemie International Edition, 2019, 58(3):806. |
[24] | LIN Z, LIU C, LIU G, et al. Preparation of efficient inverted tin-based perovskite solar cells via the bidentate coordination effect of 8-hydroxyquinoline. Chemical Communications, 2020, 56(28):4007. |
[25] | MENG X, WU T, LIU X, et al. Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. The Journal of Physical Chemistry Letters, 2020, 11(8):2965. |
[26] | MENG X, WANG Y, LIN J, et al. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule, 2020, 4(4):902. |
[27] | MENG X, LIN J, LIU X, et al. Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding. Advanced Materials, 2019, 31(42):1903721. |
[28] | XU X, CHUEH C C, YANG Z, et al. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy, 2017, 34: 392. |
[29] | TONG J H, SONG Z N, KIM H D, et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439):475. |
[30] | WANG J T, UDDIN M A, CHEN B, et al. Enhancing photostability of Sn-Pb perovskite solar cells by an alkylammonium pseudo-halogen additive. Advanced Energy Materials, 2023, 13(15):2204115. |
[31] | BING J, KIM J, ZHANG M, et al. The impact of a dynamic two- step solution process on film formation of Cs0.15(MA0.7FA0.3)0.85PbI3 perovskite and solar cell performance. Small, 2019, 15(9):1804858 |
[32] | WANG J, DATTA K, LI J, et al. Understanding the film formation kinetics of sequential deposited narrow-bandgap Pb-Sn hybrid perovskite films. Advanced Energy Materials, 2020, 10(22):2000566. |
[33] | LI S, ZHANG X, XUE X, et al. Importance of tin (II) acetate additives in sequential deposited fabrication of Sn-Pb-based perovskite solar cells. Journal of Alloys and Compounds, 2022, 904: 164050. |
[34] | OKU T. Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells. Solar Cells-New Approaches and Reviews, 2015, 1: 77. |
[35] | BAHRAM A N, MOSSAIN M, JAKOBY M, et al. Vacuum- assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Advanced Energy Materials, 2020, 10(5):1902583. |
[36] | MA Y, ZHENG F, LI S, et al. Regulating the crystallization growth of Sn-Pb mixed perovskites using the 2D perovskite (4-AMP) PbI4 substrate for high-efficiency and stable solar cells. ACS Applied Materials & Interfaces, 2023, 15(29):34862. |
[37] | FEI C, LI B, ZHANG R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Advanced Energy Materials, 2017, 7(9):1602017. |
[38] | LI C, ZHANG N, GAO P. Lessons learned: how to report XPS data incorrectly about lead-halide perovskites. Materials Chemistry Frontiers, 2023, 7(18):3797. |
[39] |
ZHANG Z, LIANG J, WANG J, et al. Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells. Nano-Micro Letters, 2022, 14(1):165.
DOI PMID |
[40] | SUN Y, YANG S, PANG Z, et al. Preferred film orientation to achieve stable and efficient Sn-Pb binary perovskite solar cells. ACS Applied Materials & Interfaces, 2021, 13(9):10822. |
[41] | ZHANG W, HUANG L, ZHENG W, et al. Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells via numerical simulations and experiments. Nano Energy, 2022, 96: 107078. |
[42] | RAOUI Y, EZ-ZAHRAOUY H, KAZIM S, et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: mechanistic insights. Journal of Energy Chemistry, 2021, 54: 822. |
[43] | DUIJINSTEE E, BALL J, CONE V, et al. Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Letters, 2020, 5(2):376. |
[44] | BUBE R. Trap density determination by space-charge-limited currents. Journal of Applied Physics, 1962, 33(5):1733. |
[45] | CAO J, LIU C K, PIRADI V, et al. Ultrathin self-assembly two-dimensional metal-organic framework films as hole transport layers in ideal-bandgap perovskite solar cells. ACS Energy Letters, 2022, 7(10):3362. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[4] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[5] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[6] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[7] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[8] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[11] | LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403. |
[12] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[13] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[14] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[15] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||