Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 611-616.DOI: 10.15541/jim20210750
Special Issue: 【信息功能】敏感陶瓷(202409); 【信息功能】电致变色与热致变色材料(202312)
• RESEARCH ARTICLE • Previous Articles Next Articles
HUANG Zhihang1(), TENG Guanhongwei2, TIE Peng3, FAN Desong1(
)
Received:
2021-12-08
Revised:
2021-12-30
Published:
2022-06-20
Online:
2022-03-10
Contact:
FAN Desong, associate professor. E-mail: dsfan@njust.edu.cnAbout author:
HUANG Zhihang (1997–), male, Master candidate. E-mail: huangzhihang@njust.edu.cn
Supported by:
CLC Number:
HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films[J]. Journal of Inorganic Materials, 2022, 37(6): 611-616.
Fig. 1 Macroscopic and microscopic characterization of perovskite ceramic films (La0.7Ca0.25K0.05MnO3, LCKMO) (a) Macroscopic photo of LCKMO film; (b) SEM image of LCKMO film surface; (c) EDS spectrum of LCKMO film; (d) XRD pattern of LCKMO film; (e) AFM image of LCKMO film
Fig. 3 Integral infrared emissivity of LCKMO films at different temperatures (a) Variation of integrated infrared emittance ∆Eh of the film excited by 21 V electric field; (b) Temperature dependent integrated infrared emittance Eh of the film before and after electrical modification
[1] |
FAN D. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films. Acta Astronautica, 2016, 121: 144-152.
DOI URL |
[2] |
SHIMAZAKI K, TACHIKAWA S, OHNISHI A, et al. Radiative and optical properties of La1-xSrxMnO3 (0≤x≤0.4) in the vicinity of metal-insulator transition temperatures from 173 to 413 K. International Journal of Thermophysics, 2001, 22(5): 1549-1561.
DOI URL |
[3] |
SHIMAZAKI K, TACHIKAWA S, OHNISHI A, et al. Temperature dependence of total hemispherical emittance in perovskite-type manganese oxides, La1-xSrxMnO3. High Temperatures High Pressures, 2001, 33(5): 525-532.
DOI URL |
[4] |
TACHIKAWA S, OHNISHI A, SHIMAKAWA Y, et al. Development of a variable emittance radiator based on a perovskite manganese oxide. Journal of Thermophysics and Heat Transfer, 2003, 17(2): 264-268.
DOI URL |
[5] | TACHIKAWA S, OHNISHI A, SHIMAZAKI K, et al. Development of a Variable Emittance Radiator. 29th International Conference on Environment Systems, 1999:1-5. |
[6] |
CHEN C, YU F, XU N, et al. Tunable thermal radiation surface based on the K-doped manganite. Ceramics International, 2020, 46(10): 15646-15653.
DOI URL |
[7] |
FAN D, LI Q, XUAN Y. Emissivity and optical properties of thermochromic material La0.7Ca0.3-xSrxMnO3 (0≤x≤0.3). International Journal of Thermophysics, 2011, 32(10): 2127-2138.
DOI URL |
[8] | TACHIKAWA S, SHIMAZAKI K, OHNISHI A, et al. Smart radiation device based on a perovskite manganese oxide. European Space Agency-Publications-ESA SP, 2003, 540: 41-48. |
[9] |
CHEN Q P, YANG J J, ZHAO Y G, et al. Electric-field control of phase separation and memory effect in Pr0.6Ca0.4MnO3/ Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures. Applied Physics Letters, 2011, 98(17): 172507.
DOI URL |
[10] |
JEEN H, BISWAS A. Electric field driven dynamic percolation in electronically phase separated (La0.4Pr0.6)0.67Ca0.33MnO3 thin films. Physical Review B, 2013, 88(2): 024415.
DOI URL |
[11] |
HA S D, AVDOGDU G H, RAMANATHAN S. Examination of insulator regime conduction mechanisms in epitaxial and polycrystalline SmNiO3 thin films. Journal of Applied Physics, 2011, 110(9): 094102.
DOI URL |
[12] |
TANAKA H, ZHANG J, KAWAI T. Giant electric field modulation of double exchange ferromagnetism at room temperature in the perovskite manganite/titanate p-n junction. Physical Review Letters, 2001, 88(2): 027204.
DOI URL |
[13] |
DU H, LIN X, XU Z, et al. Electric double-layer transistors: a review of recent progress. Journal of Materials Science, 2015, 50(17): 5641-5673.
DOI URL |
[14] |
LI C I, LIN J C, LIU H J, et al. Van der Waal epitaxy of flexible and transparent VO2 film on muscovite. Chemistry of Materials, 2016, 28(11): 3914-3919.
DOI URL |
[15] |
MA C H, LIN J C, LIU H J, et al. Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Applied Physics Letters, 2016, 108(25): 253104.
DOI URL |
[16] | BITLA Y, CHEN C, LEE H C, et al. Oxide heteroepitaxy for flexible optoelectronics. ACS Applied Materials & Interfaces, 2016, 8(47): 32401-32407. |
[17] | WU P C, CHEN P F, DO T H, et al. Heteroepitaxy of Fe3O4/muscovite: a new perspective for flexible spintronics. ACS Applied Materials & Interfaces, 2016, 8(49): 33794-33801. |
[18] |
AMRILLAH T, BITLA Y, SHIN K, et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via van der Waals epitaxy. ACS Nano, 2017, 11(6): 6122-6130.
DOI URL |
[19] |
JIA C, ZHAO X, LAI Y H, et al. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by Van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60: 476-484.
DOI URL |
[20] | ASANUMA S, XIANG P H, YAMADA H, et al. Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Applied Physics Letters, 2010, 97(14): 1039. |
[21] | HA S D, VETTER U, JIAN S, et al. Electrostatic gating of metallic and insulating phases in SmNiO3 ultrathin films. Applied Physics Letters, 2013, 102(18): 729. |
[22] |
MALZBENDER J, BATFALSKY P, VABEN R, et al. Component interactions after long-term operation of an SOFC stack with LSM cathode. Journal of Power Sources, 2012, 201: 196-203.
DOI URL |
[23] |
ZENER C. Interaction between the d shells in the transition metals. Physical Review, 1951, 81(3): 440-444.
DOI URL |
[24] |
ZHAO Y, FAN D, LI Q. Deformable manganite perovskite-based resonator with adaptively modulating infrared radiation. Applied Materials Today, 2020, 21: 100808.
DOI URL |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[3] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[4] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[5] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[6] | ZHEN Mingshuo, LIU Xiaoran, FAN Xiangqian, ZHANG Wenping, YAN Dongdong, LIU Lei, LI Chen. Electrochromic Intelligent Visual Humidity Indication System [J]. Journal of Inorganic Materials, 2024, 39(4): 432-440. |
[7] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[8] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[9] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[10] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[11] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[12] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
[13] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[14] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[15] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||