Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 617-622.DOI: 10.15541/jim20210549
Special Issue: 【生物材料】骨骼与齿类组织修复(202409); 【信息功能】纪念殷之文先生诞辰105周年虚拟学术专辑
• RESEARCH ARTICLE • Previous Articles Next Articles
WEI Ziqin1,2(), XIA Xiang2, LI Qin2, LI Guorong2, CHANG Jiang1,2(
)
Received:
2021-08-28
Revised:
2021-10-12
Published:
2022-06-20
Online:
2021-11-12
Contact:
CHANG Jiang, professor. E-mail: jchang@mail.sic.ac.cnAbout author:
WEI Ziqin (1996–), male, Master candidate. E-mail: 1149057072@qq.com
Supported by:
CLC Number:
WEI Ziqin, XIA Xiang, LI Qin, LI Guorong, CHANG Jiang. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2022, 37(6): 617-622.
BT | 0.9BT 0.1CS | 0.8BT 0.2CS | 0.7BT 0.3CS | 0.6BT 0.4CS | CS | |
---|---|---|---|---|---|---|
BT/g | 2.0000 | 1.8951 | 1.7782 | 1.6481 | 1.5014 | 0 |
CS/g | 0 | 0.1049 | 0.2215 | 0.3519 | 0.4986 | 2.0000 |
Table 1 Raw material composition of the composite ceramics
BT | 0.9BT 0.1CS | 0.8BT 0.2CS | 0.7BT 0.3CS | 0.6BT 0.4CS | CS | |
---|---|---|---|---|---|---|
BT/g | 2.0000 | 1.8951 | 1.7782 | 1.6481 | 1.5014 | 0 |
CS/g | 0 | 0.1049 | 0.2215 | 0.3519 | 0.4986 | 2.0000 |
BT | 0.9BT0.1CS | 0.8BT0.2CS | 0.7BT0.3CS | 0.6BT0.4CS | CS | |
---|---|---|---|---|---|---|
Before mineralization/(pC·N-1) | 169 | 44 | 11 | 4 | 1 | 0 |
After mineralization/(pC·N-1) | 161 | 39 | 8 | 3 | 0 | 0 |
Table 2 Piezoelectric constant d33 of composite ceramics
BT | 0.9BT0.1CS | 0.8BT0.2CS | 0.7BT0.3CS | 0.6BT0.4CS | CS | |
---|---|---|---|---|---|---|
Before mineralization/(pC·N-1) | 169 | 44 | 11 | 4 | 1 | 0 |
After mineralization/(pC·N-1) | 161 | 39 | 8 | 3 | 0 | 0 |
Fig. 3 Characterization of piezoelectric properties of composite ceramics BT; (b) 0.9BT0.1CS; (c) 0.8BT0.2CS; (d) 0.7BT0.3CS; (e) 0.6BT0.4CS; (f) CS; (g) Variation trend of hysteresis loop; (h) Piezoelectric constant Colorful figures are available on website
Fig. 4 Characterization of in vitro mineralization (a-h) SEM images of different ceramics soaked in SBF for 0 and 14 d; (i-h) EDS spectra of different ceramics soaked in SBF for 14 d SBF: Simulated body fluid
BT/% | 0.9BT0.1CS/% | 0.8BT0.2CS/% | 0.7BT0.3CS/% | |
---|---|---|---|---|
O | 59.98 | 60.53 | 61.37 | 7.84 |
P | - | 0.74 | 0.65 | 6.81 |
Si | - | 2.57 | 7.34 | 0.23 |
Ca | - | 2.04 | 4.12 | 8.62 |
Ti | 19.97 | 17.38 | 14.42 | 2.65 |
Ba | 20.05 | 16.74 | 12.10 | 2.71 |
Ca/P | - | 2.76 | 6.34 | 1.27 |
Table 3 Surface element composition of sample after 14 d mineralization
BT/% | 0.9BT0.1CS/% | 0.8BT0.2CS/% | 0.7BT0.3CS/% | |
---|---|---|---|---|
O | 59.98 | 60.53 | 61.37 | 7.84 |
P | - | 0.74 | 0.65 | 6.81 |
Si | - | 2.57 | 7.34 | 0.23 |
Ca | - | 2.04 | 4.12 | 8.62 |
Ti | 19.97 | 17.38 | 14.42 | 2.65 |
Ba | 20.05 | 16.74 | 12.10 | 2.71 |
Ca/P | - | 2.76 | 6.34 | 1.27 |
[1] |
ANTALYA H, JOHANNA B, RUSTOM L E, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 2018, 180: 143-162.
DOI URL |
[2] |
LOBB D C, DEGEORGE B R, CHHABRA A B. Bone graft substitutes: current concepts and future expectations. The Journal of Hand Surgery, 2019, 44(6): 497-505.
DOI URL |
[3] |
MAAZOUZ Y, CHIZZOLA G, DOBELIN N, et al. Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials, 2021, 275: 120912.
DOI URL |
[4] |
HENCH L L, POLAK J M. Third-generation biomedical materials. Science, 2002, 295(5557): 1014-1017.
DOI URL |
[5] |
FUKADA E, YASUDA I. On the piezoelectric effect of bone. Journal of the Physical Society of Japan, 1957, 12(10): 1158-1162.
DOI URL |
[6] |
BASSETT C A L, BECKER R O. Generation of electric potentials by bone in response to mechanical stress. Science, 1962, 137(3535): 1063-1064.
PMID |
[7] |
FUKADA E, YASUDA I. Piezoelectric effects in collagen. Japanese Journal of Applied Physics, 1964, 3(8): 117-121.
DOI URL |
[8] |
PARK J B, RECUM A F V, KENNER G H, et al. Piezoelectric ceramic implants-a feasibility study. Journal of Biomedical Materials Research, 1980, 14(3): 269-277.
DOI URL |
[9] | ATTILIO M, JONATHAN B, GIUSEPPE D V, et al. Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Applied Materials & Interfaces, 2015, 7(46): 25574-25579. |
[10] |
BUSUIOC C, OLARET E, STANCU I C, et al. Electrospun fibre webs templated synthesis of mineral scaffolds based on calcium phosphates and barium titanate. Nanomaterials, 2020, 10: 772.
DOI URL |
[11] | KHARE D, BASU B, DUBEY A K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 2020, 258: 120280-1-25. |
[12] |
WEINER S, ADDADI L. Crystallization pathways in biomineralization. Annual Review of Materials Research, 2011, 41: 21-40.
DOI URL |
[13] |
REZNIKOV N, STEELE J A M, FRATZL P, et al. A materials science vision of extracellular matrix mineralization. Nature Reviews Materials, 2016, 1(8): 16041.
DOI URL |
[14] |
WU C T, CHANG J. Silicate bioceramics for bone tissue regeneration. Journal of Inorganic Materials, 2013, 28(1): 29-39.
DOI URL |
[15] | LIN K L, CHANG J, WANG Z. Fabrication and the characterisation of the bioactivity and degradability of macroporous calcium silicate bioceramics in vitro. Journal of Inorganic Materials, 2005, 20(3): 692-698. |
[16] |
LIU X Y, DING C X, WANG Z Y. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials, 2001, 22(14): 2007-2012.
DOI URL |
[17] |
WANG X, ZHOU Y, XIA L, et al. Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloids Surf. Biointerfaces, 2015, 126: 358-366.
DOI URL |
[18] |
WANG S G, XU Y C, ZHOU J, et al. In vitro degradation and surface bioactivity of iron-matrix composites containing silicate- based bioceramic. Bioactive Materials, 2017, 2(1): 10-18.
DOI URL |
[19] |
KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15): 2907-2915.
DOI URL |
[20] | LI H T, ZHANG B P, WEN J B, et al. Influences of sintering temperature on structure and properties of Cu-doped lead-free LNKN ceramics. Journal of Functional Materials, 2011, 42(S5): 931-934. |
[21] |
ZHANG S, YU F, GREEN D J. Piezoelectric materials for high temperature sensors. Journal of the American Ceramic Society, 2011, 94(10): 3153-3170.
DOI URL |
[22] |
TANG Y, WU C, WU Z, et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Scientific Reports, 2017, 7: 43360.
DOI URL |
[23] | KIM D, HAN S A, KIM J H, et al. Biomolecular piezoelectric materials: from amino acids to living tissues. Advanced Materials, 2020, 32(14): 1906989. |
[24] | BAXTER F R, TURNER I G, BOWEN C R, et al. The structure and properties of electroceramics for bone graft substitution. Key Engineering Materials, 2008, 361(22): 99-102. |
[25] |
MAEDA H, TSUDA K, FUKADA E. Dependence on temperature and hydration of piezoelectric, dielectric and elastic-constants of bone. Japanese Journal of Applied Physics, 1976, 15(12): 2333-2336.
DOI URL |
[26] |
SALAHINEJAD E, BAGHJEGHAZ M J. Structure, biomineralization and biodegradation of Ca-Mg oxyfluorosilicates synthesized by inorganic salt coprecipitation. Ceramics International, 2017, 43(13): 10299-10306.
DOI URL |
[1] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[2] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[3] | WU Aijun, ZHU Min, ZHU Yufang. Copper-incorporated Calcium Silicate Nanorods Composite Hydrogels for Tumor Therapy and Skin Wound Healing [J]. Journal of Inorganic Materials, 2022, 37(11): 1203-1216. |
[4] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[5] | BAO Feng, CHANG Jiang. Calcium Silicate Nanowires Based Composite Electrospun Scaffolds: Preparation, Ion Release and Cytocompatibility [J]. Journal of Inorganic Materials, 2021, 36(11): 1199-1207. |
[6] | CHANG Yuchen, LIN Ziyang, XIE Xin, WU Zhangfan, YAO Aihua, YE Song, LIN Jian, WANG Deping, CUI Xu. An Injectable Composite Bone Cement Based on Mesoporous Borosilicate Bioactive Glass Spheres [J]. Journal of Inorganic Materials, 2020, 35(12): 1398-1406. |
[7] | Jin-Jie WU, Yan LI, Ren-Chu WEI, Jian-Xin WANG, Shu-Xin QU, Jie WENG, Wei ZHI. Bioactivity and Mechanical Stability of Hydroxyapatite Ceramicsunder Micro-vibration Environment [J]. Journal of Inorganic Materials, 2019, 34(4): 417-424. |
[8] | HUANG Yong-An, LU Biao, ZOU Yi-Xuan, LI Dan-Dan, YAO Ying-Bang, TAO Tao, LIANG Bo, LU Sheng-Guo. Grain Size Effect on Dielectric, Piezoelectric and Ferroelectric Property of BaTiO3 Ceramics with Fine Grains [J]. Journal of Inorganic Materials, 2018, 33(7): 767-772. |
[9] | ZHANG Biao, YANG Chang-An, SHI Pei. Synthesis of Graphene/Hydroxyapatite Composite Bioceramics via Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2018, 33(12): 1355-1359. |
[10] | WANG Ming-Hui, ZHONG Hong-Bin, FAN Yu-Chi, CHEN Ting. Spark Plasma Sintering of Bioactive Ca2MgSi2O7 Ceramics [J]. Journal of Inorganic Materials, 2017, 32(8): 825-830. |
[11] | HU Zhi-Bo, YAN Yang, ZHENG Shui-Lin, SUN Qin, YIN Sheng-Nan. Preparation and Characterization of Humidity Control Material Based on Diatomite/Ground Calcium Carbonate Composite [J]. Journal of Inorganic Materials, 2016, 31(1): 81-87. |
[12] | TAN Guo-Xin, OUYANG Kong-You, ZHOU Lei, LIU Yan, ZHANG Lan, NING Cheng-Yun. Titanium Modification by Calcium Ion Chelated Polydopamine and Its Cytocompatibility [J]. Journal of Inorganic Materials, 2015, 30(10): 1075-1080. |
[13] | KOU Si-Wang, YU Shu-Hui, SUN Rong, YANG Hai-Peng. Preparation and Dielectric Properties of the Three-phase Composites of Graphite Oxide/Barium Titanate/Epoxy Resin [J]. Journal of Inorganic Materials, 2014, 29(1): 71-76. |
[14] | YANG Guo-Jing, LIN Mian, ZHANG Lei, GOU Zhong-Ru. Progress of Calcium Sulfate and Inorganic Composites for Bone Defect Repair [J]. Journal of Inorganic Materials, 2013, 28(8): 795-803. |
[15] | ZHENG Xue-Bin, XIE You-Tao. Progress on Biomedical Ceramic Coatings Prepared by Thermal Spraying [J]. Journal of Inorganic Materials, 2013, 28(1): 12-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||