Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (10): 1091-1096.DOI: 10.15541/jim20200664
• RESEARCH ARTICLE • Previous Articles Next Articles
SONG Keke1(), HUANG Hao2, LU Mengjie3, YANG Anchun2, WENG Jie1,2(
), DUAN Ke4(
)
Received:
2020-11-20
Revised:
2020-12-28
Published:
2021-10-20
Online:
2021-01-25
Contact:
WENG Jie, professor. E-mail: jweng@swjtu.cn; DUAN Ke, associate professor. E-mail: keduan9@126.com
About author:
SONG Keke(1996-), female, Master candidate. E-mail: 793952151@qq.com
Supported by:
CLC Number:
SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite[J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096.
Fig. 1 SEM images of hydroxyapatite samples doped by different elements at 1%, 3% and 5% doping amount (a1-a3) Zn-HA; (b1-b3) Si-HA; (c1-c3) Mg-HA; (d1-d3) Fe-HA; (e1- e3) Mn-HA; (f1-f3) Sr-HA; (g1-g3) Se-HA; (h1-h3) Co-HA; (i1-i3) Cu-HA; (j1) HA
Sample | Crystallinity/% | a/Å | b/Å | c/Å |
---|---|---|---|---|
HA | 97.24 | 9.44 | 9.44 | 6.89 |
5%Zn-HA | 82.60 | 9.45 | 9.45 | 6.88 |
5%Si-HA | 95.19 | 9.43 | 9.43 | 6.88 |
5%Mg-HA | 85.75 | 9.45 | 9.45 | 6.88 |
5%Fe-HA | 95.40 | 9.44 | 9.44 | 6.89 |
5%Mn-HA | 94.01 | 9.42 | 9.42 | 6.87 |
5%Sr-HA | 85.37 | 9.44 | 9.44 | 6.90 |
5%Se-HA | 92.85 | 9.43 | 9.43 | 6.88 |
5%Co-HA | 92.31 | 9.43 | 9.43 | 6.88 |
5%Cu-HA | 91.15 | 9.45 | 9.45 | 6.88 |
Table 1 Crystallinity and lattice parameters of 5% element doped samples (1 Å =0.1 nm)
Sample | Crystallinity/% | a/Å | b/Å | c/Å |
---|---|---|---|---|
HA | 97.24 | 9.44 | 9.44 | 6.89 |
5%Zn-HA | 82.60 | 9.45 | 9.45 | 6.88 |
5%Si-HA | 95.19 | 9.43 | 9.43 | 6.88 |
5%Mg-HA | 85.75 | 9.45 | 9.45 | 6.88 |
5%Fe-HA | 95.40 | 9.44 | 9.44 | 6.89 |
5%Mn-HA | 94.01 | 9.42 | 9.42 | 6.87 |
5%Sr-HA | 85.37 | 9.44 | 9.44 | 6.90 |
5%Se-HA | 92.85 | 9.43 | 9.43 | 6.88 |
5%Co-HA | 92.31 | 9.43 | 9.43 | 6.88 |
5%Cu-HA | 91.15 | 9.45 | 9.45 | 6.88 |
Ion | Radius dimension/nm |
---|---|
Ca2+ | 0.099 |
Sr2+ | 0.113 |
Mn2+ | 0.080 |
Co2+ | 0.074 |
Zn2+ | 0.074 |
Cu2+ | 0.072 |
Mg2+ | 0.065 |
Fe3+ | 0.064 |
Table 2 Ion (atom) radius size of doped elements
Ion | Radius dimension/nm |
---|---|
Ca2+ | 0.099 |
Sr2+ | 0.113 |
Mn2+ | 0.080 |
Co2+ | 0.074 |
Zn2+ | 0.074 |
Cu2+ | 0.072 |
Mg2+ | 0.065 |
Fe3+ | 0.064 |
[1] |
BOANINI E, GAZZANO M, BIGI A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomaterialia, 2010, 6(6):1882-1894.
DOI URL |
[2] |
LAKHKAR N J, LEE I H, KIM H W, et al. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Advanced Drug Delivery Reviews, 2013, 65(4):405-420.
DOI URL |
[3] |
CHENG Y, WANG M, WANG X X, et al. Investigation on in vitro osteogenic properties of malti-doped hydroxyapatite with natural bone content. Journal of Inorganic Materials, 2016, 31(12):1341-1346.
DOI URL |
[4] | 王丽萍. 微量氟、锌、锶掺杂羟基磷灰石晶体结构及生物学效应研究. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所)博士学位论文, 2018. |
[5] |
GOMES S, VICHERY C, STEPHANE D, et al. Cu-doping of calcium phosphate bioceramics: from mechanism to the control of cytotoxicity. Acta Biomaterialia, 2018, 65(1):462-474.
DOI URL |
[6] |
XIAO D Q, TAN Z, FU Y, et al. Hydrothermal synthesis of hollow hydroxyapatite microspheres with nano-structured surface assisted by inositol hexakisphosphate. Ceramics International, 2014, 40(7):10183-10188.
DOI URL |
[7] |
QIAO Y, ZHANG W, TIAN P, et al. Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials, 2014, 35(25):6882-6897.
DOI URL |
[8] |
KIM H, MONDAL S, BHARATHIRAJA S, et al. Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceramics International, 2017, 44(6):6062-6071.
DOI URL |
[9] | 颜世铭. 钴的生理作用及其与健康的关系. 广东微量元素科学, 2008, 15(7):19. |
[10] | BEJARANO J, DETSCH R, BOCCACCINI A R, et al. PDLLA scaffolds with Cu- and Zn-doped bioactive glasses having multifunctional properties for bone regeneration. Journal of Biomedical Materials Research Part A, 2017, 105A(3):746-756. |
[11] |
IGNJATOVIC N L, AJDUKOVI Z, RAJKOVI J, et al. Enhanced osteogenesis of nanosized cobalt-substituted hydroxyapatite. Journal of Bionic Engineering, 2015, 12(4):604-612.
DOI URL |
[12] | ZHENG Y, YANG Y, DENG Y. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. Materials & Engineering C,Materials for Biological Applications, 2019, 99:770-782. |
[13] | LI X, WANG Y, CHEN Y, et al. Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials, 2020, 257:120253. |
[14] |
WANG Y, WANG J, HAO H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano, 2016, 10(11):9927.
DOI URL |
[15] | PORTER A E, BEST S M, BONFIELD W. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. Journal of Biomedical Materials Research Part A, 2004, 68A(1):133-141. |
[16] |
BENGIY, AMMAR Z A, ZAFER E. Co-doped hydroxyapatites as potential materials for biomedical applications. Microchemical Journal, 2019, 144:443-453.
DOI URL |
[17] | 代钊, 汪大林. 锶取代羟基磷灰石的制备方法和生物学特征. 中国组织工程研究, 2018, 22(6):938-944. |
[18] |
VARITSARA B, XIAOAN Z, LI T, et al. Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect. Biomaterials, 2019, 192:323-333.
DOI URL |
[19] | DJORDJE V, TAMARA M, TANJA S, et al. Mg/Cu co-substituted hydroxyapatite-biocompatibility, mechanical properties and antimicrobial activity. Ceramics International, 2019, 45(17):22029-22039. |
[20] | LIN K, XIA L, LI H, et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials, 2013, 34(38):10028-10042. |
[21] |
DING Q Q, ZHANG X J, HUANG Y, et al. In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. Journal of Materials Science, 2015, 50(1):189-202.
DOI URL |
[22] | ALSHEMARY A Z, GOH YF, AKRAM MU, et al. Barium and fluorine doped synthetic hydroxyapatite: characterization and in-vitro bioactivity analysis. Science of Advanced Materials, 2015, 50:189-202. |
[23] |
NOURI-FELEKORI M, KHAKBIZ M, NEZAFATI N. Synthesis and characterization of Mg, Zn and Sr-incorporated hydroxyapatite whiskers by hydrothermal method. Materials Letters, 2019, 243(MAY15):120-124.
DOI URL |
[24] | WANG Q, LI P, TANG P, et al. Experimental and simulation studies of strontium/fluoride-codoped hydroxyapatite nanoparticles with osteogenic and antibacterial activities. Colloids and Surfaces B: Biointerfaces, 2019, 182:110359. |
[25] |
KIM H, MONDAL S, BHARATHIRAJA S, et al. Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceramics International, 2018, 44(6):6062-6071.
DOI URL |
[26] |
MA X, PENG W, SU W, et al. Delicate assembly of ultrathin hydroxyapatite nanobelts with nanoneedles directed by dissolved cellulose. Inorganic Chemistry, 2018, 57:4516-4523.
DOI URL |
[27] |
KARUNAKARAN G, KUMAR G S, CHO E B, et al. Microwave- assisted hydrothermal synthesis of mesoporous carbonated hydroxyapatite with tunable nanoscale characteristics for biomedical applications. Ceramics International, 2019, 45(1):970-977.
DOI URL |
[28] |
MONIKA S. Substituted hydroxyapatites for biomedical applications: a review. Ceramics International, 2015, 41(8):9203-9231.
DOI URL |
[29] |
TOUNSI H, DJEMAl S, PETITTO C, et al. Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B Environmental, 2011, 107(1):158-163.
DOI URL |
[30] | HE LEI, LI HONGYU, CHEN XINGYU, et al. Selenium-substituted hydroxyapatite particles with regulated microstructures for osteogenic differentiation and anti-tumor effects. Ceramics International, 2019, 45(11):13787-13789. |
[1] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[2] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[3] | LIU Yan, ZHANG Yufan, WANG Ximan, LI Ting, MA Wenting, YANG Fuwei, CHEN Liang, ZHAO Dongyue, YAN Xiaoqin. Consolidation of Fragile Weathered Bone Relics Using Hydroxyapatite Material as Consolidant [J]. Journal of Inorganic Materials, 2023, 38(11): 1345-1354. |
[4] | CHEN Yaling, SHU Song, WANG Shaoxin, LI Jianjun. Mn-HAP SCR Catalyst: Preparation and Sulfur Resistance [J]. Journal of Inorganic Materials, 2022, 37(10): 1065-1072. |
[5] | ZHU Yutong, TAN Peijie, LIN Hai, ZHU Xiangdong, ZHANG Xingdong. Injectable Hyaluronan/Hydroxyapatite Composite: Preparation, Physicochemical Property and Biocompatibility [J]. Journal of Inorganic Materials, 2021, 36(9): 981-990. |
[6] | LIN Ziyang, CHANG Yuchen, WU Zhangfan, BAO Rong, LIN Wenqing, WANG Deping. Different Simulated Body Fluid on Mineralization of Borosilicate Bioactive Glass-based Bone Cement [J]. Journal of Inorganic Materials, 2021, 36(7): 745-752. |
[7] | WU Zhongcao, HUAN Zhiguang, ZHU Yufang, WU Chengtie. 3D Printing and Characterization of Microsphere Hydroxyapatite Scaffolds [J]. Journal of Inorganic Materials, 2021, 36(6): 601-607. |
[8] | WU Yonghao, LI Xiangfeng, ZHU Xiangdong, ZHANG Xingdong. Construction of Hydroxyapatite Nanoceramics with High Mechanical Strength and Efficiency in Promoting the Spreading and Viability of Osteoblasts [J]. Journal of Inorganic Materials, 2021, 36(5): 552-560. |
[9] | WANG Tingting, SHI Shumei, LIU Chenyuan, ZHU Wancheng, ZHANG Heng. Synthesis of Hierarchical Porous Nickel Phyllosilicate Microspheres as Efficient Adsorbents for Removal of Basic Fuchsin [J]. Journal of Inorganic Materials, 2021, 36(12): 1330-1336. |
[10] | SHAO Yueting, ZHU Yingjie, DONG Liying, CAI Anyong. Nanocomposite “Xuan Paper” Made from Ultralong Hydroxyapatite Nanowires and Cellulose Fibers and Its Anti-mildew Properties [J]. Journal of Inorganic Materials, 2021, 36(1): 107-112. |
[11] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. |
[12] | DONG Shaojie,WANG Xudong,SHEN Steve Guofang,WANG Xiaohong,LIN Kaili. Research Progress on Functional Modifications and Applications of Bioceramic Scaffolds [J]. Journal of Inorganic Materials, 2020, 35(8): 867-881. |
[13] | SUN Tuanwei,ZHU Yingjie. One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires [J]. Journal of Inorganic Materials, 2020, 35(6): 724-728. |
[14] | LIU Ziyang, GENG Zhen, LI Zhaoyang. Preparing Biomedical CaCO3/HA Composite with Oyster Shell [J]. Journal of Inorganic Materials, 2020, 35(5): 601-607. |
[15] | DAI Zhao,WANG Ming,WANG Shuang,LI Jing,CHEN Xiang,WANG Da-Lin,ZHU Ying-Chun. Zirconia Reinforced Trace Element Co-doped Hydroxyapatite Coating [J]. Journal of Inorganic Materials, 2020, 35(2): 179-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||