Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 581-588.DOI: 10.15541/jim20190234
Special Issue: 2020年环境材料论文精选(三)有机小分子去除
Previous Articles Next Articles
JI Bang1,2,ZHAO Wenfeng3,DUAN Jieli4,MA Lizhe3,FU Lanhui1,YANG Zhou1()
Received:
2019-05-20
Revised:
2019-07-01
Published:
2020-05-20
Online:
2019-07-23
Supported by:
CLC Number:
JI Bang, ZHAO Wenfeng, DUAN Jieli, MA Lizhe, FU Lanhui, YANG Zhou. Synthesis of TiO2/WO3 on Nickel Foam for the Photocatalytic Degradation of Ethylene[J]. Journal of Inorganic Materials, 2020, 35(5): 581-588.
Fig. 3 Different magnification SEM images of nickel foam(a-c), SEM (d) and HRTEM (e) images and EDS mapping (f-h) of sample TW-6 (a, b) Nickel foam before corrosion oxidation; (c) Nickel foam after corrosion oxidation
Photocatalytic film | Regression equation | R2 | Rate constant, K°/min-1 |
---|---|---|---|
Nickel foam | ln(C0/C) = 0.0002t | 0.9832 | 0.0002 |
TiO2 | ln(C0/C) = 0.0035t | 0.9785 | 0.0035 |
TW-2 | ln(C0/C) = 0.0055t | 0.9942 | 0.0055 |
TW-4 | ln(C0/C) = 0.0069t | 0.9905 | 0.0069 |
TW-6 | ln(C0/C) = 0.0332t | 0.9803 | 0.0332 |
TW-8 | ln(C0/C) = 0.0075t | 0.9744 | 0.0075 |
Table 1 First-order kinetic parameters of photocatalytic degradation of ethylene
Photocatalytic film | Regression equation | R2 | Rate constant, K°/min-1 |
---|---|---|---|
Nickel foam | ln(C0/C) = 0.0002t | 0.9832 | 0.0002 |
TiO2 | ln(C0/C) = 0.0035t | 0.9785 | 0.0035 |
TW-2 | ln(C0/C) = 0.0055t | 0.9942 | 0.0055 |
TW-4 | ln(C0/C) = 0.0069t | 0.9905 | 0.0069 |
TW-6 | ln(C0/C) = 0.0332t | 0.9803 | 0.0332 |
TW-8 | ln(C0/C) = 0.0075t | 0.9744 | 0.0075 |
[1] |
DAN M, HUANG M, LIAO F , et al. Identification of ethylene responsive mirnas and their targets from newly harvested banana fruits using high-throughput sequencing. Journal of Agricultural and Food Chemistry, 2018,66(40):10628-10639.
DOI URL PMID |
[2] | 励建荣, 朱丹实 . 果蔬保鲜新技术研究进展. 食品与生物技术学报, 2012,31(4):337-347. |
[3] | TAS C E, HENDESSI S, BAYSAL M , et al. Halloysite nanotubes/ polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties. Food and Bioprocess Technology, 2017,10(4):789-798. |
[4] | PIRSA S, CHAVOSHIZADEH S . Design of an optical sensor for ethylene based on nanofiber bacterial cellulose film and its application for determination of banana storage time. Polymers for Advanced Technologies, 2018,29(5):1385-1393. |
[5] | SANWAL G G, PAYASI A . Garlic extract plus sodium metabisulphite enhances shelf life of ripe banana fruit. International Journal of Food Science & Technology, 2007,42(3):303-311. |
[6] | ZHU X L, LIANG X Z, WANG P , et al. Porous Ag-ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: Insight into the role of Ag particles.Applied Surface Science, 2018,456:493-500. |
[7] | CHA B J, SAQLAIN S, SEO H O , et al. Hydrophilic surface modification of TiO2 to produce a highly sustainable photocatalyst for outdoor air purification. Applied Surface Science, 2019,479:31-38. |
[8] | ZHANG Y J, HE P Y, YANG Y M , et al. Renewable conversion of slag to graphene geopolymer for H2 production and wastewater treatment.Catalysis Today, 2019, doi: 10.1016/j.cattod.2019.02.003. |
[9] | HE P Y, ZHANG Y J, CHEN H , et al. Development of an eco-eff1cient CaMoO4/electroconductive geopolymer composite for recycling silicomanganese slag and degradation of dye wastewater. Journal of Cleaner Production, 2019,208:1476-1487. |
[10] | MAKROPOULOU T, PANAGIOTOPOULOU P, VENIERI D . N-doped TiO2 photocatalysts for bacterial inactivation in water. Journal of Chemical Technology & Biotechnology, 2018,93(9):2518-2526. |
[11] | ZHANG H, LIN J, LI Z , et al. Organic dye doped graphitic carbon nitride with a tailored electronic structure for enhanced photocatalytic hydrogen production. Catalysis Science & Technology, 2019,9(2):502-508. |
[12] | YANG Y, CUI Y, MIAO L , et al. Effects of treatment process and nano-additive on the microstructure and properties of Al2O3-TiO2 nanocomposite powders used for plasma spraying. Powder Technology, 2018,338:304-312. |
[13] | YAN Y, ZHOU X, LAN J , et al. Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres. Journal of Photochemistry and Photobiology A: Chemistry, 2018,367:355-364. |
[14] |
WANG X, XIANG Y, ZHOU B , et al. Enhanced photocatalytic performance of Ag/TiO2 nanohybrid sensitized by black phosphorus nanosheets in visible and near-infrared light. Journal of Colloid and Interface Science, 2019,534:1-11.
DOI URL PMID |
[15] | DEB P, DHAR J C . Fast response UV photodetection using TiO2 nanowire/graphene oxide thin-film heterostructure. IEEE Photonics Technology Letters, 2019,31(8):571-574. |
[16] | PARK H, YOO S, KIM K . Synthesis of carbon-coated TiO2 by underwater discharge with capillary carbon electrode. IEEE Transactions on Plasma Science, 2019,47(2):1482-1486. |
[17] |
MANIBALAN G, MURUGADOSS G, THANGAMUTHU R , et al. Facile synthesis of heterostructure CeO2-TiO2 nanocomposites for enhanced electrochemical sensor and solar cell applications.Journal of Alloys and Compounds, 2019, 773:449-461.
DOI URL |
[18] | SABZI M, MOUSAVI ANIJDAN S H . Microstructural analysis and optical properties evaluation of Sol-Gel heterostructured NiO-TiO2 film used for solar panels. Ceramics International, 2019,45(3):3250-3255. |
[19] | LI S, LIU Z, XIANG G , et al. Influence of calcination temperature on the photocatalytic performance of the hierarchical TiO2 pinecone- like structure decorated with CdS nanoparticles. Ceramics International, 2019,45(1):767-776. |
[20] | ZHANG Q, WU Y, LI L , et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts. ACS Sustainable Chemistry & Engineering, 2018,6(9):12502-12510. |
[21] | YU YANG, TONG MING-XING, HE YU-LAN , et al. Preparation and visible-light photocatalytic performance of mesoporous hollow TiO2/WO3 spheres. Journal of Inorganic Materials, 2017,32(4):365-371. |
[22] |
ZHANG Y, WAN J, KE Y . A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. Journal of Hazardous Materials, 2010, 177(1/3):750-754.
DOI URL PMID |
[23] | JIA J, LI D, CHENG X , et al. Construction of graphite/TiO2/ nickel foam photoelectrode and its enhanced photocatalytic activity. Applied Catalysis A: General, 2016,525:128-136. |
[24] | HU H, XIAO W, YUAN J , et al. High photocatalytic activity and stability for decomposition of gaseous acetaldehyde on TiO2/Al2O3 composite films coated on foam nickel substrates by Sol-Gel processes. Journal of Sol-Gel Science and Technology, 2008,45(1):1-8. |
[25] | LI S, ZHANG G, ZHENG H , et al. Application of BiFeO3-based on nickel foam composites with a highly efficient catalytic activity and easily recyclable in Fenton-like process under microwave irradiation. Journal of Power Sources, 2018,386:21-27. |
[26] | PAL B, VIJAYAN B L, KRISHNAN S G , et al. Hydrothermal syntheses of tungsten doped TiO2 and TiO2/WO3 composite using metal oxide precursors for charge storage applications. Journal of Alloys and Compounds, 2018,740:703-710. |
[27] |
DOHĿEVIĿ-MITROVIĿ Z, STOJADINOVIĿ S, LOZZI L , et al. WO3/TiO2 composite coatings: structural, optical and photocatalytic properties. Materials Research Bulletin, 2016,83:217-224.
DOI URL |
[28] |
MENDOZA J A, LEE D H, KANG J . Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: effect of surface modification. Chemosphere, 2017,182:539-546.
DOI URL PMID |
[29] | KHAN H, RIGAMONTI M G, PATIENCE G S , et al. Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Applied Catalysis B: Environmental, 2018, 226:311-323. |
[30] | WANG C, FU J, LONG M , et al. Facilitated photoinduced electron storage and two-electron reduction of oxygen by reduced graphene oxide in rGO/TiO2/WO3 composites. Electrochimica Acta, 2017,250:108-116. |
[31] | ZHANG L, LI Y, WANG H , et al. Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm, 2013,15(31):5986-5993. |
[32] | HUNGE Y M . Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin film. Ceramics International, 2017,43(13):10089-10096. |
[33] | XIAO P Y, LOU J F, ZHANG H X , et al. Enhanced visible- light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight. Catalysis Science & Technology, 2018,8(1):201-209. |
[34] | ZENG X, WANG Z, WANG G , et al. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017,218:163-173. |
[35] |
SONG X L, LI Y, WEI Z , et al. Synthesis of BiVO4/P25 composites for the photocatalytic degradation of ethylene under visible light. Chemical Engineering Journal, 2017,314:443-452.
DOI URL |
[36] |
LEE J Y, JO W . Heterojunction-based two-dimensional N-doped TiO2/WO3 composite architectures for photocatalytic treatment of hazardous organic vapor. Journal of Hazardous Materials, 2016,314:22-31.
DOI URL PMID |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | CHENG Bo, AN Xiaohang, LI Dinghua, YANG Rongjie. Flame-retardant Properties and Transformation of Flame-retardant Mechanisms of EVA: Effect of ATH/ADP Ratio [J]. Journal of Inorganic Materials, 2024, 39(5): 509-516. |
[3] | JING Xinxin, CHEN Biqing, ZHAI Jiaxin, YUAN Meiling. Ni-Co-B-RE (Sm, Dy, Tb) Composite Electrodes: Preparation by Chemical Deposition Method and Electrocatalytic Hydrogen Evolution Performance [J]. Journal of Inorganic Materials, 2024, 39(5): 467-476. |
[4] | YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2024, 39(3): 321-329. |
[5] | CAI Mengyu, LI-YANG Hongmiao, YANG Caiyun, ZHOU Yuting, WU Hao. Activated Sludge Incineration Ash Derived Fenton-like Catalyst: Preparation and Degradation Performance on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1135-1142. |
[6] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[7] | TAN Shuyu, LIU Xiaoning, BI Zhijie, WAN Yong, GUO Xiangxin. Jointing of Cathode Coating and Interface Modification for Stabilizing Poly(ethylene oxide) Electrolytes Against High-voltage Cathodes [J]. Journal of Inorganic Materials, 2023, 38(12): 1466-1474. |
[8] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[9] | WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300. |
[10] | JIA Xin, LI Jinyu, DING Shihao, SHEN Qianqian, JIA Husheng, XUE Jinbo. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301-1308. |
[11] | CHEN Zhang, ZHAO Ruoyi, HAN Shaojie, WANG Huanran, YANG Qun, GAO Yanfeng. Electrochromic WO3 Thin Films: Preparation by Nanocrystalloid Liquid Phase Coating and Performance Optimization [J]. Journal of Inorganic Materials, 2023, 38(11): 1355-1363. |
[12] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[13] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[14] | CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336. |
[15] | LÜ Qingyang, ZHANG Yuting, GU Xuehong. Fabrication of Hollow Fiber Supported TiO2 Ultrafiltration Membranes via Ultrasound-assisted Sol-Gel Method [J]. Journal of Inorganic Materials, 2022, 37(10): 1051-1057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||