Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (10): 1117-1122.DOI: 10.15541/jim20190588
Special Issue: 计算材料论文精选(2020)
Previous Articles Next Articles
LIN Qimin1(),CUI Jiangong2,YAN Xin1,YUAN Xueguang1(
),CHEN Xiaoyu1,LU Qichao1,LUO Yanbin1,HUANG Xue3,ZHANG Xia1(
),REN Xiaomin1
Received:
2019-11-20
Revised:
2019-12-09
Published:
2020-10-20
Online:
2020-01-20
About author:
LIN Qimin, male, PhD candidate. E-mail: lqm@bupt.edu.cn
Supported by:
CLC Number:
LIN Qimin, CUI Jiangong, YAN Xin, YUAN Xueguang, CHEN Xiaoyu, LU Qichao, LUO Yanbin, HUANG Xue, ZHANG Xia, REN Xiaomin. First-principles Study on Electronic Structure and Optical Properties of Single Point Defect Graphene Oxide[J]. Journal of Inorganic Materials, 2020, 35(10): 1117-1122.
Fig. 1 Different types of graphene oxide structures (a) Graphene oxide adsorbed with hydroxyl; (b) Graphene oxide with single substitution epoxy bond; (c) Graphene oxide with carbon oxygen double bond and sp3 hybrid epoxy bond; (d) Graphene oxide with two carbon-oxygen double bonds and one carbon-oxygen single bond; (e, f) and (e1, f1) Top and side views of the structure in (d) adsorbed with hydrogen on the upper and lower side of the suspended oxygen atom, respectively
* | O1-C2 | O2-C6 | O3-C12 | |
---|---|---|---|---|
LDA | d1 | 0.128 | 0.128 | 0.137 |
d2 | 0.128 | 0.128 | 0.136 | |
e | 0.124 | 0.124 | 0.138 | |
f | 0.124 | 0.124 | 0.137 | |
GGA | d | 0.124 | 0.124 | 0.133 |
e | 0.122 | 0.122 | 0.139 | |
f | 0.122 | 0.122 | 0.138 |
Table 1 Bond length in different structures calculated by different pseudopotential functions (nm)
* | O1-C2 | O2-C6 | O3-C12 | |
---|---|---|---|---|
LDA | d1 | 0.128 | 0.128 | 0.137 |
d2 | 0.128 | 0.128 | 0.136 | |
e | 0.124 | 0.124 | 0.138 | |
f | 0.124 | 0.124 | 0.137 | |
GGA | d | 0.124 | 0.124 | 0.133 |
e | 0.122 | 0.122 | 0.139 | |
f | 0.122 | 0.122 | 0.138 |
* | (a) | (b) | (c) | (d) | (e) | (f) |
---|---|---|---|---|---|---|
LDA | -12.7 | -6.1 | -6.5 | -13.1 | -19.6 | -18.6 |
Table 2 Formation energy with different structures (eV)
* | (a) | (b) | (c) | (d) | (e) | (f) |
---|---|---|---|---|---|---|
LDA | -12.7 | -6.1 | -6.5 | -13.1 | -19.6 | -18.6 |
* | C11 | C22 | C12 | C66 |
---|---|---|---|---|
a | 1738.99 | 1618.45 | 282.75 | 1.03 |
b | 1789.57 | 1761.01 | 309.15 | 1.63 |
c | 1607.47 | 958.73 | 163.94 | 0.99 |
d | 2015.11 | 1405.41 | 147.00 | 1.39 |
e | 1968.65 | 825.43 | 148.48 | -11.90 |
f | 1846.90 | 710.38 | 240.54 | -8.83 |
Table 3 Elastic coefficients of graphene oxide with different structures
* | C11 | C22 | C12 | C66 |
---|---|---|---|---|
a | 1738.99 | 1618.45 | 282.75 | 1.03 |
b | 1789.57 | 1761.01 | 309.15 | 1.63 |
c | 1607.47 | 958.73 | 163.94 | 0.99 |
d | 2015.11 | 1405.41 | 147.00 | 1.39 |
e | 1968.65 | 825.43 | 148.48 | -11.90 |
f | 1846.90 | 710.38 | 240.54 | -8.83 |
Fig. 2 The charge number of three kinds of different atoms in three structures showing in Fig. 1(d), (e) and (f) (d) Graphene oxide with two carbon-oxygen double bonds and one carbon-oxygen single bond; (e, f) Structure (d) adsorbed with hydrogen on the upper and lower side of the suspended oxygen atom, respectively
Fig. 3 Band structures and density of states (DOS) of different structure models (a) Graphene oxide adsorbed with hydroxyl; (b) Graphene oxide with single substitution epoxy bond; (c) Graphene oxide with carbon oxygen double bond and sp3 hybrid epoxy bond; (d) Graphene oxide with two carbon-oxygen double bonds and one carbon-oxygen single bond; (e,f) Structure (d) adsorbed with hydrogen on the upper and lower side of the suspended oxygen atom, respectively
Fig. 4 Absorption coefficient of different structure models in which (b-g) the absorption coefficient of graphene and structures in Fig. 1(a-f) (a) Graphene; (b) Graphene oxide adsorbed with hydroxyl; (c) Graphene oxide with single substitution epoxy bond; (d) Graphene oxide with carbon oxygen double bond and sp3 hybrid epoxy bond; (e) Graphene oxide with two carbon-oxygen double bonds and one carbon-oxygen single bond; (f, g) Structure (d) adsorbed with hydrogen on the upper and lower side of the suspended oxygen atom, respectively
[1] | YANG K, SHUAI X R, YANG H C , et al. Electrochemical performance of activated graphene powder supercapacitors using a room temperature ionic lLiquid electrolyte. Acta Phys. -Chim. Sin., 2019,35(7):755-765. |
[2] |
PERES N M R . The Transport properties of graphene. J. Phys. Condens. Matter., 2009,21(32):323201-323210.
DOI URL PMID |
[3] | CHEN D M . Variation of graphene Raman G peak splitting with strain. Acta. Phys. Sin., 2010,59(9):6399-6404. |
[4] | WANG Y F, LI X W . First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta. Phys. Sin., 2018,67(11):168-175. |
[5] | WANG J J, WANG F, YUAN P F , et al. First-principles study of nanoscale friction between graphenes. Acta Phys. Sin., 2012,61(10):337-343. |
[6] | JOSHI R K, ALWARAPPAN S, YOSHIMURA M , et al. Graphene oxide: the new membrane material. Applied Materials Today, 2015,1:1-12. |
[7] |
GAO W, SINGH N, SONG L , et al. Direct laser writing of micro- supercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 6:496-500.
DOI URL PMID |
[8] | WANG G X, PEI Z B, YE C H , et al. Inkjet-printing and performance investigation of self-powered flexible graphene oxide humidity sensors. Journal of Inorganic Materials , 2019,34(1):114-120. |
[9] | HUANG J R, WANG L Y, SHI C C , et al. Selective detection of picric acid using functionalized reduced graphene oxide sensor device. Sensors & Actuators B Chemical, 196:567-573. |
[10] | LI C, CAI L, LI W W , et al. Adsorption of NO2 by hydrazine hydrate-reduced graphene oxide. Acta Phys. Sin., 2019,68(11):257-262. |
[11] | PENG P, LIU H T, WU B , et al. Nitrogen doped graphene with a p-type field-effect and its fine modulation. Acta Phys. Chim. Sin., 2019,35(11):1282-1290. |
[12] | CHU C, ZHANG J, BEI Z , et al. Hydrogen adsorption of Mg- doped Graphene oxide: afirst-principles study. Journal of Physical Chemistry C , 2013,117:4337-4344. |
[13] |
ROGERS G W, LIU J Z . High-performance graphene oxide electromechanical actuators. Journal of the American Chemical Society, 2012,134:1250-1255.
DOI URL PMID |
[14] | ZHU Y, MURALI S, CAI W , et al. Graphene and graphene oxide: synthesis, properties, and applications. Cheminform, 2010,22:3906-3924. |
[15] |
KIM S, ZHOU S, HU, Y, et al. Room-temperature metastability of multilayer graphene oxide films. Nature Materials , 2012,11(6):544-549.
DOI URL PMID |
[16] | ZHAO H, ZHOU L, WEI D , et al. Effects of external electric field on hydrogen storage performance of Li-decorated graphene oxide. Chemical Journal of Chinese Universities, 37(1):100-107. |
[17] |
LOH K P, BAO Q, EDA G , et al. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2:1015-1024.
DOI URL PMID |
[18] | ZHANG Q, ZHANG H, CHENG X L . Highly stable two-dimensional graphene oxide: electronic properties of its periodic structure and optical properties of its nanostructures. Chinese Physics B, 27(2): 027301-1-7. |
[19] |
BAE S, KIM H, LEE Y , et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol, 2010,5:574-578.
DOI URL PMID |
[20] | COMPTON, O C, NGUYEN, S B T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 2010,6:711-723. |
[21] | HONG F, ZHOU L Q, HUANG Y , et al. Synthesis and characterization of graphene by improved hummers method. Chemistry & Bioengineering, 2012,29:31-33. |
[22] |
CAI W W, PINER R D, STADERMANN F J , et al. Synthesis and solid-state NMR structural characterization of 13c-labeled graphite oxide. Science, 2008,321:1815-1817
DOI URL PMID |
[23] | MO J W, QIU Y W, YI R B , et al. Temperature-dependent properties of metastable graphene oxide. Acta Phys. Sin. , 2019,68(15):284-292. |
[24] |
YAN J A, XIAN L, CHOU M Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett., 2009,103: 086802-1-4.
DOI URL PMID |
[25] | WANG L, SUN Y Y, LEE K , et al. Stability of graphene oxide phases from firstp calculations. Physical Review B 2010, 82: 161406-1-4. |
[26] | PENG Y, LI J . Ammonia adsorption on graphene and graphene oxide: a first-principles study. Frontiers of Environmental Science & Engineering, 2013,7:403-411. |
[27] | ZHANG Y, SHI Y M, BAO Y Z , et al. Effect of surface passivation on the electronic properties of GaAs nanowire: A first-principle study. Acta Phys. Sin. , 2017,66(19):295-301. |
[28] | YI W C, HU T, SU T , et al. A CNH monolayer: a direct gap 2d semiconductor with anisotropic electronic and optical properties. Journal of Materials Chemistry C , 2017,5:8498-8503. |
[29] | LIN Q M, ZHANG X, LU Q C , , et al. First-principles study on structural stability of graphene oxide. First-principles study on structural stability of graphene oxide and catalytic activity of nitric acid. Acta Phys. Sin., 2019, 68(24): 247302-1-6. |
[1] | LÜ Zhaoyang, XU Yong, YANG Jiuyan, TU Guangsheng, TU Bingtian, WANG Hao. Effect of MgF2 Additive on Preparation and Optical Properties of MgAl1.9Ga0.1O4 Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(5): 531-538. |
[2] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[3] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[4] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[5] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[6] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[7] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[8] | GU Junyi, FAN Wugang, ZHANG Zhaoquan, YAO Qin, ZHAN Hongquan. Structure and Optical Property of Pr2O3 Powder Prepared by Reduction [J]. Journal of Inorganic Materials, 2023, 38(7): 771-777. |
[9] | ZHANG Shouchao, CHEN Hongyu, LIU Hongfei, YANG Yu, LI Xin, LIU Defeng. High Temperature Recovery of Neutron Irradiation-induced Swelling and Optical Property of 6H-SiC [J]. Journal of Inorganic Materials, 2023, 38(6): 678-686. |
[10] | LI Yue, ZHANG Xuliang, JING Fangli, HU Zhanggui, WU Yicheng. Growth and Property of Ce3+-doped La2CaB10O19 Crystal [J]. Journal of Inorganic Materials, 2023, 38(5): 583-588. |
[11] | YU Ruixian, WANG Guodong, WANG Shouzhi, HU Xiaobo, XU Xiangang, ZHANG Lei. Effect of High-temperature Annealing on AlN Crystal Grown by PVT Method [J]. Journal of Inorganic Materials, 2023, 38(3): 343-349. |
[12] | LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969-975. |
[13] | LIU Qiang, WANG Qian, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 911-917. |
[14] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[15] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||