Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (8): 899-903.DOI: 10.15541/jim20190013
• RESEARCH LETTERS • Previous Articles Next Articles
CHENG Tian-Sheng1,2,3,PAN Jiong4,XU Ying-Ying1,2,3,BAO Qun-Qun1,2,3,HU Ping1(),SHI Jian-Lin1(
)
Received:
2019-01-06
Published:
2019-08-20
Online:
2019-05-29
Supported by:
CLC Number:
CHENG Tian-Sheng, PAN Jiong, XU Ying-Ying, BAO Qun-Qun, HU Ping, SHI Jian-Lin. Synthesis of Zn, Mn doped Fe3O4 Nanoparticles with Tunable Size[J]. Journal of Inorganic Materials, 2019, 34(8): 899-903.
Fig. 1 TEM images of ZnMn-Fe3O4 nanoparticles and histograms of their size distributions obtained by Fe(acac)3, Mn(acac)2 and Zn(acac)2 with (a, c) and without (b, d) adding 1,2-hexadecanediol
Fig. 2 TEM image (a), histograms of their size distributions (b), high-resolution TEM image (c) and selected area electron diffraction (SAED) pattern (d) of 15 nm-sized ZnMn-Fe3O4 nanoparticles prepared from Fe(acac)3, MnCl2 and ZnCl2
Fig. 3 TEM images of 20 nm-sized ZnMn-Fe3O4 nanoparticles synthesized from Fe(acac)3, MnCl2 and ZnCl2 with different reflux time durations of 1.5 h (a) and 2 h (b), and the corresponding histograms of size distributions of 1.5 h (c) and 2 h (d)
Fig. 4 XRD patterns (a), FT-IR spectra (b) and energy dispersive X-ray spectroscopy (EDS) data (c) of 5 nm, 10 nm, 15 nm, and 20 nm-sized ZnMn-Fe3O4 nanoparticles
[1] | NOH S H, NA W, JANG J T , et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Letters, 2012,12(7):3716-3721. |
[2] | DI CORATO R, BEALLE G, KOLOSNJAJ-TABI J , et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano, 2015,9(3):2904-2916. |
[3] |
NA H B, SONG I C, HYEON T . Inorganic nanoparticles for MRI contrast agents. Advanced Materials, 2009,21(21):2133-2148.
DOI URL |
[4] |
GAO J H, GU H W, XU B . Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts of Chemical Research, 2009,42(8):1097-1107.
DOI URL |
[5] | WAN Y, CHENG G, LIU X , et al. Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nature Biomedical Engineering, 2017,1:0058. |
[6] |
LU A H, SALABAS E L, SCHUTH F . Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007,46(8):1222-1244.
DOI URL |
[7] |
HOCHEPIED J F, PILENI M P . Magnetic properties of mixed cobalt- zinc ferrite nanoparticles. Journal of Applied Physics, 2000,87(5):2472-2478.
DOI URL |
[8] | ARULMURUGAN R, JEYADEVAN B, VAIDYANATHAN G , et al. Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-pecipitation. Journal of Magnetism and Magnetic Materials, 2005,288:470-477. |
[9] | JANG J T, NAH H, LEE J H , et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed., 2009,48(7):1234-1238. |
[10] | DENG H, LI X, PENG Q , et al. Monodisperse magnetic single- crystal ferrite microspheres. Angew. Chem. Int. Ed., 2005,44(18):2782-2785. |
[11] | WOO K, LEE H J, AHN J P , et al. Sol-Gel mediated synthesis of Fe2O3 nanorods. Advanced Materials, 2003,15(20):1761-1764. |
[12] | WU J H, KO S P, LIU H L , et al. Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Materials Letters, 2007,61(14/15):3124-3129. |
[13] |
XIE J, LEE S, CHEN X . Nanoparticle-based theranostic agents . Advanced Drug Delivery Reviews, 2010,62(11):1064-1079.
DOI URL |
[14] | LEE J H, HUH Y M, JUN Y W , et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2007,13(1):95-99. |
[15] | SINGH M, RAMANATHAN R, MAYES E L H , et al. One-pot synthesis of maghemite nanocrystals across aqueous and organic solvents for magnetic hyperthermia. Applied Materials Today, 2018,12:250-259. |
[16] | FORTIN J P, WILHELM C, SERVAIS J , et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society, 2007,129(9):2628-2635. |
[17] | GU H, XU K, XU C , et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun., 2006(9):941-949. |
[18] | XU H, AGUILAR Z P, YANG L , et al. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials, 2011,32(36):9758-9765. |
[19] | LEE J H, JANG J T, CHOI J S , et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 2011,6(7):418-422. |
[20] | LARTIGUE L, INNOCENTI C, KALAIVANI T , et al. Water- dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. Journal of the American Chemical Society, 2011,133(27):10459-10472. |
[21] | WU L, MENDOZA-GARCIA A, LI Q , et al. Organic phase syntheses of magnetic nanoparticles and their applications. Chemical Reviews, 2016,116(18):10473-10512. |
[22] | SUN S H, ZENG H, ROBINSON D B , et al. Monodisperse MFe2O4(M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 2004,126(1):273-279. |
[23] | QU Y, LI J, REN J , et al. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe, 2014,6(19):16867-16879. |
[24] | RONG C B, LI D, NANDWANA V , et al. Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Advanced Materials, 2006,18(22):2984-2988. |
[25] | JUN Y W, HUH Y M, CHOI J S , et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal of the American Chemical Society, 2005,127(16):5732-5733. |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[14] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[15] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||