Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (8): 899-903.DOI: 10.15541/jim20190013
• RESEARCH LETTERS • Previous Articles Next Articles
CHENG Tian-Sheng1,2,3,PAN Jiong4,XU Ying-Ying1,2,3,BAO Qun-Qun1,2,3,HU Ping1(),SHI Jian-Lin1(
)
Received:
2019-01-06
Published:
2019-08-20
Online:
2019-05-29
Supported by:
CLC Number:
CHENG Tian-Sheng, PAN Jiong, XU Ying-Ying, BAO Qun-Qun, HU Ping, SHI Jian-Lin. Synthesis of Zn, Mn doped Fe3O4 Nanoparticles with Tunable Size[J]. Journal of Inorganic Materials, 2019, 34(8): 899-903.
Fig. 1 TEM images of ZnMn-Fe3O4 nanoparticles and histograms of their size distributions obtained by Fe(acac)3, Mn(acac)2 and Zn(acac)2 with (a, c) and without (b, d) adding 1,2-hexadecanediol
Fig. 2 TEM image (a), histograms of their size distributions (b), high-resolution TEM image (c) and selected area electron diffraction (SAED) pattern (d) of 15 nm-sized ZnMn-Fe3O4 nanoparticles prepared from Fe(acac)3, MnCl2 and ZnCl2
Fig. 3 TEM images of 20 nm-sized ZnMn-Fe3O4 nanoparticles synthesized from Fe(acac)3, MnCl2 and ZnCl2 with different reflux time durations of 1.5 h (a) and 2 h (b), and the corresponding histograms of size distributions of 1.5 h (c) and 2 h (d)
Fig. 4 XRD patterns (a), FT-IR spectra (b) and energy dispersive X-ray spectroscopy (EDS) data (c) of 5 nm, 10 nm, 15 nm, and 20 nm-sized ZnMn-Fe3O4 nanoparticles
[1] | NOH S H, NA W, JANG J T , et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Letters, 2012,12(7):3716-3721. |
[2] | DI CORATO R, BEALLE G, KOLOSNJAJ-TABI J , et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano, 2015,9(3):2904-2916. |
[3] |
NA H B, SONG I C, HYEON T . Inorganic nanoparticles for MRI contrast agents. Advanced Materials, 2009,21(21):2133-2148.
DOI URL |
[4] |
GAO J H, GU H W, XU B . Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts of Chemical Research, 2009,42(8):1097-1107.
DOI URL |
[5] | WAN Y, CHENG G, LIU X , et al. Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nature Biomedical Engineering, 2017,1:0058. |
[6] |
LU A H, SALABAS E L, SCHUTH F . Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007,46(8):1222-1244.
DOI URL |
[7] |
HOCHEPIED J F, PILENI M P . Magnetic properties of mixed cobalt- zinc ferrite nanoparticles. Journal of Applied Physics, 2000,87(5):2472-2478.
DOI URL |
[8] | ARULMURUGAN R, JEYADEVAN B, VAIDYANATHAN G , et al. Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-pecipitation. Journal of Magnetism and Magnetic Materials, 2005,288:470-477. |
[9] | JANG J T, NAH H, LEE J H , et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed., 2009,48(7):1234-1238. |
[10] | DENG H, LI X, PENG Q , et al. Monodisperse magnetic single- crystal ferrite microspheres. Angew. Chem. Int. Ed., 2005,44(18):2782-2785. |
[11] | WOO K, LEE H J, AHN J P , et al. Sol-Gel mediated synthesis of Fe2O3 nanorods. Advanced Materials, 2003,15(20):1761-1764. |
[12] | WU J H, KO S P, LIU H L , et al. Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Materials Letters, 2007,61(14/15):3124-3129. |
[13] |
XIE J, LEE S, CHEN X . Nanoparticle-based theranostic agents . Advanced Drug Delivery Reviews, 2010,62(11):1064-1079.
DOI URL |
[14] | LEE J H, HUH Y M, JUN Y W , et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2007,13(1):95-99. |
[15] | SINGH M, RAMANATHAN R, MAYES E L H , et al. One-pot synthesis of maghemite nanocrystals across aqueous and organic solvents for magnetic hyperthermia. Applied Materials Today, 2018,12:250-259. |
[16] | FORTIN J P, WILHELM C, SERVAIS J , et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society, 2007,129(9):2628-2635. |
[17] | GU H, XU K, XU C , et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun., 2006(9):941-949. |
[18] | XU H, AGUILAR Z P, YANG L , et al. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials, 2011,32(36):9758-9765. |
[19] | LEE J H, JANG J T, CHOI J S , et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 2011,6(7):418-422. |
[20] | LARTIGUE L, INNOCENTI C, KALAIVANI T , et al. Water- dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. Journal of the American Chemical Society, 2011,133(27):10459-10472. |
[21] | WU L, MENDOZA-GARCIA A, LI Q , et al. Organic phase syntheses of magnetic nanoparticles and their applications. Chemical Reviews, 2016,116(18):10473-10512. |
[22] | SUN S H, ZENG H, ROBINSON D B , et al. Monodisperse MFe2O4(M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 2004,126(1):273-279. |
[23] | QU Y, LI J, REN J , et al. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe, 2014,6(19):16867-16879. |
[24] | RONG C B, LI D, NANDWANA V , et al. Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Advanced Materials, 2006,18(22):2984-2988. |
[25] | JUN Y W, HUH Y M, CHOI J S , et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal of the American Chemical Society, 2005,127(16):5732-5733. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[3] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[4] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[7] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[8] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[9] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[10] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[13] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||