Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (8): 803-810.DOI: 10.15541/jim20180373
Special Issue: 电催化研究
Previous Articles Next Articles
ZHANG Sheng,JIANG Yi,JI Yuan-Yuan,DU Ying,SHENG Zhen-Huan,YIN Jing-Zhou,LI Qiao-Qi,ZHANG Li-Li()
Received:
2018-08-15
Revised:
2018-10-09
Published:
2019-08-20
Online:
2019-04-18
Supported by:
CLC Number:
ZHANG Sheng, JIANG Yi, JI Yuan-Yuan, DU Ying, SHENG Zhen-Huan, YIN Jing-Zhou, LI Qiao-Qi, ZHANG Li-Li. Attapulgite/g-C3N4 Composites: Synthesis and Electrocatalytic Oxygen Evolution Property[J]. Journal of Inorganic Materials, 2019, 34(8): 803-810.
Sample | SBET/(m2?g-1) |
---|---|
ATP | 190.800 |
g-C3N4 | 8.821 |
ATP/g-C3N4-0.33 | 26.980 |
ATP/g-C3N4-0.40 | 38.280 |
ATP/g-C3N4-0.50 | 53.180 |
ATP/g-C3N4-0.67 | 82.440 |
Table 1 Specific surface area of each sample
Sample | SBET/(m2?g-1) |
---|---|
ATP | 190.800 |
g-C3N4 | 8.821 |
ATP/g-C3N4-0.33 | 26.980 |
ATP/g-C3N4-0.40 | 38.280 |
ATP/g-C3N4-0.50 | 53.180 |
ATP/g-C3N4-0.67 | 82.440 |
Sample | E/V(vs RHE) | η/mV | Tafel slope/(mV?dec-1) |
---|---|---|---|
g-C3N4 | 1.73 | 500 | 155 |
ATP/g-C3N4-0.67 | 1.68 | 450 | 175 |
ATP/g-C3N4-0.50 | 1.64 | 410 | 118 |
ATP/g-C3N4-0.40 | 1.65 | 420 | 128 |
ATP/g-C3N4-0.33 | 1.69 | 460 | 143 |
Table 2 Oxygen evolution overpotential E(V vs RHE) and overpotential of the catalyst at 10 mA/cm2 and the slope of the Tafel curve
Sample | E/V(vs RHE) | η/mV | Tafel slope/(mV?dec-1) |
---|---|---|---|
g-C3N4 | 1.73 | 500 | 155 |
ATP/g-C3N4-0.67 | 1.68 | 450 | 175 |
ATP/g-C3N4-0.50 | 1.64 | 410 | 118 |
ATP/g-C3N4-0.40 | 1.65 | 420 | 128 |
ATP/g-C3N4-0.33 | 1.69 | 460 | 143 |
[1] | 许炜, 陶占良, 陈军 . 储氢研究进展. 化学进展, 2006,18(2):200-210. |
[2] |
SPACIL H S, TEDMON C S . Electrochemical dissociation of water vapor in solid oxide electrolyte cells. Journal of the Electrochemical Society, 1969,116(12):1618.
DOI URL |
[3] | 丁福臣, 易玉峰 . 制氢储氢技术. 化学工业出版社, 2006. |
[4] |
SINGH R N, SINGH A, ANINDITA . Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH. International Journal of Hydrogen Energy, 2009,34(4):2052-2057.
DOI URL |
[5] | LU B, CAO D, WANG P , et al. Oxygen evolution reaction on Ni-substituted CoO nanowire array electrodes. International Journal of Hydrogen Energy, 2011,36(1):72-78. |
[6] | BENNETT L H, CUTHILL J R, MCALISTER A J , et al. Electronic structure and catalytic behavior of tungsten carbide. Science, 1974,184(4136):563. |
[7] | CHEN Z, HIGGGINS D, YU A , et al. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environmental Science, 2011,4:3167-3192. |
[8] |
MORALESGUIO C G, STERN L A, HU X . Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014,43(18):6555-6569.
DOI URL |
[9] |
CHU ZENG-YONG, YUAN BO, YAN TING-NAN . Recent progress in photocatalysis of g-C3N4. Journal of Inorganic Materials, 2014,29(8):785-794.
DOI URL |
[10] | WANG X, MAEDA K, CHEN X , et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. Journal of the American Chemical Society, 2009,131(5):1680-1681. |
[11] | CHEN X, JUN Y S, TAKANABE K , et al. Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chemistry of Materials, 2009,21:4093. |
[12] | ZHANG J, GRZELCZAK M, HOU Y , et al. Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements.Chemical Science, 2012,3(2):443-446. |
[13] | WANG X, CHEN X, THOMAS A , et al. Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Advanced Materials, 2010,21(16):1609-1612. |
[14] | CHEN X, ZHANG J, FU X , et al. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. Journal of the American Chemical Society, 2009,131(33):11658-11659. |
[15] | LIU G, NIU P, SUN C , et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. Journal of the American Chemical Society, 2010,132(33):11642-11648. |
[16] | SHI QI, LEI YONG-PENG, WANG YING-DE , et al. In-situ preparation and electrocatalytic oxygen reduction performance of N-doped graphene@CNF. Journal of Inorganic Materials, 2016,31(4):351-357. |
[17] | 王悦, 蒋权, 尚介坤 , 等. 介孔氮化碳材料合成的研究进展. 物理化学学报, 2016,32(8):1913-1928. |
[18] |
王芳, 刘俊华, 殷元骐 , 等. 凹凸棒凸负载铂催化剂上对氯硝基苯的高活性高选择性液相加氢反应. 物理化学学报, 2009,25(8):1678-1682.
DOI |
[19] | 高旭升, 刘光, 史沁芳 , 等. 钴铁双金属氧化物多孔纳米棒的制备及其电解水析氧性能. 无机化学学报, 2017,33(4):623-629. |
[20] | LIU L, QI Y H, HU J S , et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra. Applied Surface Science, 2015,351:1146-1154. |
[21] | WANG X C, MAEDA K, THOMAS A , et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009,8(1):76-80. |
[22] | CAO K T, JIANG Z Y, ZHANG X S , et al. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015,490(15):72-83. |
[23] | ZHOU S Y, XUE A L, ZHANG Y , et al. Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+ and reactive dyes. Applied Clay Science, 2015,107(6):220-229. |
[24] | ZHAO H X, CHEN S, QUAN X , et al. ntegration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/ reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B Environmental, 2016,194(5):134-140. |
[25] | YU H W, YANG S S, RUAN H M , et al. Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite. Applied Clay Science, 2015,111(s4-6):67-75. |
[1] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[2] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[3] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[4] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[5] | MA Rundong, GUO Xiong, SHI Kaixuan, AN Shengli, WANG Ruifen, GUO Ruihua. S-type Heterojunction of MOS2/g-C3N4: Construction and Photocatalysis [J]. Journal of Inorganic Materials, 2023, 38(10): 1176-1182. |
[6] | HU Yue, AN Lin, HAN Xin, HOU Chengyi, WANG Hongzhi, LI Yaogang, ZHANG Qinghong. RhO2 Modified BiVO4 Thin Film Photoanodes: Preparation and Photoelectrocatalytic Water Splitting Performance [J]. Journal of Inorganic Materials, 2022, 37(8): 873-882. |
[7] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[8] | HONG Jiahui, MA Ran, WU Yunchao, WEN Tao, AI Yuejie. CoNx/g-C3N4 Nanomaterials Preparation by MOFs Self-sacrificing Template Method for Efficient Photocatalytic Reduction of U(VI) [J]. Journal of Inorganic Materials, 2022, 37(7): 741-749. |
[9] | SUN Lian, GU Quanchao, YANG Yaping, WANG Honglei, YU Jinshan, ZHOU Xingui. Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2022, 37(7): 697-709. |
[10] | FU Yongsheng, BI Min, LI Chun, SUN Jingwen, WANG Xin, ZHU Junwu. Research Progress on Non-noble Metal/Nitrogen-doped Carbon Composite Materials in Electrocatalytic Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2022, 37(2): 163-172. |
[11] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
[12] | SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation [J]. Journal of Inorganic Materials, 2021, 36(6): 561-569. |
[13] | ZHOU Yuzhu, ZHANG Youkui, SONG Li. Noble Metal Phosphide Electrocatalysts and Their Synchrotron-based X-ray Absorption Spectroscopy [J]. Journal of Inorganic Materials, 2021, 36(3): 225-244. |
[14] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[15] | LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis [J]. Journal of Inorganic Materials, 2020, 35(7): 735-747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||