Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (7): 699-710.DOI: 10.15541/jim20170523
Special Issue: 离子电池材料
• Orginal Article • Next Articles
MA Guo-Qiang1,2, JIANG Zhi-Min2, CHEN Hui-Chuang2, WANG Li1, DONG Jing-Bo2, ZHANG Jian-Jun2, XU Wei-Guo2, HE Xiang-Ming1
Received:
2017-11-06
Revised:
2018-01-16
Published:
2018-07-10
Online:
2018-06-19
About author:
MA Guo-Qiang. E-mail: maguoqiang@sinochem.com
CLC Number:
MA Guo-Qiang, JIANG Zhi-Min, CHEN Hui-Chuang, WANG Li, DONG Jing-Bo, ZHANG Jian-Jun, XU Wei-Guo, HE Xiang-Ming. Research Process on Novel Electrolyte of Lithium-ion Battery Based on Lithium Salts[J]. Journal of Inorganic Materials, 2018, 33(7): 699-710.
Lithium salt | Ionic conductivity (Solvent)/(mS∙cm-1) | Oxidation potential(Solvent and working electrode)/V (vs. Li/Li+) | Al- corrosion | Melting point/℃ | Initial decomposition temperature/℃ |
---|---|---|---|---|---|
LiPF6 | 10.8 (EC : DMC=1 : 1b) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 200[ | 125[ |
LiClO4 | 10.1 (EC : DMC=1 : 1a) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 236[ | 450[ |
LiBF4 | 4.9 (EC : DMC=1 : 1b) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 293-300[ | 175[ |
LiTFSI | 9 (EC : DMC=1 : 1b) [ | 4.35 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | Y | 234[ | 360[ |
LiFSI | 9.73 (EC : EMC=3 : 7a) [ | 5.6 (EC : DMC=1 : 1a, Pt) [ | Y | 135[ | 200[ |
LiBOB | 14.9 (DME) [ | 4.6 (PC : EC : DEC=1 : 1 : 1a, Pt) [ | N | >300[ | 275[ |
LiDFOB | 8.58 (EC : DMC=1 : 1a) [ | >6 (PC : EC : EMC=1 : 1 : 3a, Al) [ | N | 265-271[ | 200[ |
LiTDI | 6.7 (EC : DMC=1 : 1b) [ | >4.5 (EC: DMC1 : 1b, Pt) [ | N | - | 285[ |
Table 1 Properties of some lithium salts
Lithium salt | Ionic conductivity (Solvent)/(mS∙cm-1) | Oxidation potential(Solvent and working electrode)/V (vs. Li/Li+) | Al- corrosion | Melting point/℃ | Initial decomposition temperature/℃ |
---|---|---|---|---|---|
LiPF6 | 10.8 (EC : DMC=1 : 1b) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 200[ | 125[ |
LiClO4 | 10.1 (EC : DMC=1 : 1a) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 236[ | 450[ |
LiBF4 | 4.9 (EC : DMC=1 : 1b) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 293-300[ | 175[ |
LiTFSI | 9 (EC : DMC=1 : 1b) [ | 4.35 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | Y | 234[ | 360[ |
LiFSI | 9.73 (EC : EMC=3 : 7a) [ | 5.6 (EC : DMC=1 : 1a, Pt) [ | Y | 135[ | 200[ |
LiBOB | 14.9 (DME) [ | 4.6 (PC : EC : DEC=1 : 1 : 1a, Pt) [ | N | >300[ | 275[ |
LiDFOB | 8.58 (EC : DMC=1 : 1a) [ | >6 (PC : EC : EMC=1 : 1 : 3a, Al) [ | N | 265-271[ | 200[ |
LiTDI | 6.7 (EC : DMC=1 : 1b) [ | >4.5 (EC: DMC1 : 1b, Pt) [ | N | - | 285[ |
Fig. 2 Schematic description of a solvated lithium ion’s journey from solution bulk to grapheneinterior, and the impedance components associated with these steps[43](a) Conventional model; (b) Improved model
Fig. 9 (a) Representative Li+ cation solvate species (SSIPs, CIPs and AGGs) in dilute and concentrated electrolytes. Schematic illustration of the electrolyte reduction mechanism at the electrode/electrolyte interface in (b) dilute and (c) concentrated electrolytes[78]
Fig. 10 Supercells used and projected density of states (PDOS) obtained in quantum mechanical DFT-MD simulations on non-aqueous (a) dilute (0.4 mol/L) and (b) superconcentrated (4.2 mol/L) LiTFSA/AN solutions[78]
[1] | 闫春生, 李媛媛, 刘园园. 锂离子电池电解质锂盐的发展历程和新型锂盐的研究进展. 河南化工, 2016, 33(4): 14-17. |
[2] | YAMADA Y, YAMADA A.Review-superconcentrated electrolytes for lithium batteries.Journal of The Electrochemical Society, 2015, 162(14): A2406-A2423. |
[3] | 吴宇平. 锂离子电池: 应用与实践, 2版. 北京: 化学工业出版社, 2012. |
[4] | 李永坤, 张若昕, 刘建生. 锂离子电池电解液稳定添加剂研究进展. 电池工业, 2008, 13(5): 353-356. |
[5] | 刘旭, 杨续来. 锂离子电池电解质锂盐的研究进展. 电源技术, 2016, 40(1): 218-220. |
[6] | YANG H, ZHUANG G V, JR P N R. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6.Journal of Power Sources, 2006, 161(1): 573-579. |
[7] | RAVDEL B, ABRAHAM K M, GITZENDANNER R, ,et al.. Thermal stability of lithium-ion battery electrolytes. Journal of Power Sources, 2003, s119-121: 805-810. |
[8] | KAWAMURA T, OKADA S, YAMAKI J I.Decomposition reaction of LiPF6-based electrolytes for lithium ion cells.Journal of Power Sources, 2006, 156(2): 547-554. |
[9] | PLAKHOTNYK A V, ERNST L, SCHMUTZLER R.Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O.Journal of Fluorine Chemistry, 2005, 126(1): 27-31. |
[10] | PARK C K, ZHANG Z, XU Z,et al. Variables study for the fast charging lithium ion batteries.Journal of Power Sources, 2007, 165(2): 892-896. |
[11] | LUX S F, LUCAS I T, POLLAK E,et al. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes.Electrochemistry Communications, 2012, 14(1): 47-50. |
[12] | 庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析. 化学进展, 2010, 22(6): 1044-1057. |
[13] | 宋印涛, 李连仲, 丁静, 等. 锂离子电池电解质盐的研究进展. 浙江化工, 2010, 41(8): 24-26. |
[14] | ARAVINDAN V, GNANARAJ J, MADHAVI S,et al.Lithium-ion conducting electrolyte salts for lithium batteries.Chemistry, 2011, 17(51): 14326-14346. |
[15] | KAWAMURA T, KIMURA A, EGASHIRA M,et al.Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells.Journal of Power Sources, 2002, 104(2): 260-264. |
[16] | XU K.Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chemical Reviews, 2004, 104(10): 4303-4418. |
[17] | ZHANG S S, XU K, JOW T R.A new approach toward improved low temperature performance of Li-ion battery.Electrochemistry Communications, 2002, 4(11): 928-932. |
[18] | ZHANG Z A, ZHAO X X, PENG B,et al.Mixed salts for lithium iron phosphate-based batteries operated at wide temperature range.Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2260-2265. |
[19] | KOMABA S, ISHIKAWA T, YABUUCHI N,et al.Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries.ACS Applied Materials & Interfaces, 2011, 3(11): 4165-4168. |
[20] | LI Y, LIAN F, MA L,et al.Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high- capacity Li1.16[Mn0.75Ni0.25]0.84O2 material.Electrochimica Acta, 2015, 168: 261-270. |
[21] | ZHANG S S, XU K, JOW T R.Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB.Journal of Power Sources, 2006, 156(2): 629-633. |
[22] | 蒲薇华, 何向明, 王莉, 等. 锂离子电池LiBOB电解质盐研究. 化学进展, 2006, 18(12): 1703-1709. |
[23] | XU K, ZHANG S S, LEE U,et al.LiBOB: is it an alternative salt for lithium ion chemistry? Journal of Power Sources, 2005, 146(1): 79-85. |
[24] | ZHANG S S.Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte.Journal of Power Sources, 2007, 163(2): 713-718. |
[25] | ZHANG S S.An unique lithium salt for the improved electrolyte of Li-ion battery.Electrochemistry Communications, 2006, 8(9): 1423-1428. |
[26] | 邓凌峰, 陈洪. 锂电池用草酸二氟硼酸锂有机电解液的电化学性能. 无机化学学报, 2009, 25(9): 1646-1650. |
[27] | KANAMURA K, UMEGAKI T, SHIRAISHI S,et al.Electrochemical behavior of Al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N.Journal of the Electrochemical Society, 2002, 149(2): A185-A194. |
[28] | 胡锋波, 张庆华, 詹晓力, 等. 双(氟代磺酰)亚胺及其盐的制备、性能与应用进展. 化工进展, 2011, 30(10): 2097-2105. |
[29] | YANG G, SHI J, SHEN C,et al. Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive.RSC Advances, 2017, 7(42): 26052-26059. |
[30] | NIEDZICKI L, GRUGEON S, LARUELLE S,et al.New covalent salts of the 4+ V class for Li batteries.Journal of Power Sources, 2011, 196(20): 8696-8700. |
[31] | PAILLET S, SCHMIDT G, LADOUCEUR S,et al.Power capability of LiTDI-based electrolytes for lithium-ion batteries.Journal of Power Sources, 2015, 294: 507-515. |
[32] | YOUNESI R, VEITH G M, JOHANSSON P,et al.Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S.Energy & Environmental Science, 2015, 8(7): 1905-1922. |
[33] | HAN H B, ZHOU S S, ZHANG D J,et al.Lithium bis(fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties.Journal of Power Sources, 2011, 196(7): 3623-3632. |
[34] | TAN S, JI Y J, ZHANG Z R,et al.Recent progress in research on high-voltage electrolytes for lithium-ion batteries.ChemPhysChem, 2014, 15(10): 1956-1969. |
[35] | ABOUIMRANE A, DING J, DAVIDSON I J.Liquid electrolyte based on lithium bisfluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations.Journal of Power Sources, 2009, 189(1): 693-696. |
[36] | 谭晓兰, 程新群, 马玉林, 等. LiBOB基电解液成膜性及其循环性能. 物理化学学报, 2009, 25(10): 1967-1971. |
[37] | 秦利平, 郭为民. 新型锂盐二氟草酸硼酸锂的研究进展. 电源技术, 2014, 38(6): 1159-1161. |
[38] | Sigma-Aldrich, . |
[39] | HU Y, LI H, HUANG X,et al.Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries.Electrochemistry Communications, 2004, 6(1): 28-32. |
[40] | YANG L, ZHANG H, DRISCOLL P,et al.Six-membered-ring malonatoborate-based lithium salts as electrolytes for lithium ion batteries.ECS Transactions, 2011, 33(39): 57-69. |
[41] | 戴立新. 高氯酸锂有机电解液的制备研究. 新疆有色金属, 2007, 30(A01):98-99. |
[42] | SEO D M, BORODIN O, HAN S D,et al.Electrolyte solvation and ionic association.Journal of the Electrochemical Society, 2012, 161(14): A2042-A2053. |
[43] | XU KANG.“Charge-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes.Journal of the Electrochemical Society, 2007, 154(3): A162-A167. |
[44] | CHEN X, XU W, ENGELHARD M,et al.Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures.Journal of Materials Chemistry A, 2014, 2(7): 2346-2352. |
[45] | 王青磊, 李法强, 贾国凤, 等. 混合锂盐LiTFSI-LiODFB基电解液的高温性能. 电池, 2016, 46(4): 1001-1579. |
[46] | AMINE K, LIU J, BELHAROUAK I.High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells.Electrochemistry Communications, 2005, 7(7): 669-673. |
[47] | SONG H, CAO Z, CHEN X,et al.Capacity fade of LiFePO4/ graphite cell at elevated temperature.Journal of Solid State Electrochemistry, 2013, 17(3): 599-605. |
[48] | 宋海申, 赖延清, 李劼, 等. LiPF6/LiBOB混合锂盐改善LiFePO4/石墨动力电池高温循环性能研究. 功能材料, 2013, 44(19): 2849-2853. |
[49] | KIM K E, JANG J Y, PARK I,et al.A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates.Electrochemistry Communications, 2015, 61: 121-124. |
[50] | LU Y, TU Z, ARCHER L A.Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials, 2014, 13(10): 961-969. |
[51] | LIN D, LIU Y, LIANG Z,et al.Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nature Nanotechnology, 2016, 11(7): 626. |
[52] | BHATT A I, KAO P, BEST A S,et al.Understanding the morphological changes of lithium surfaces during cycling in electrolyte solutions of lithium salts in an ionic liquid.Journal of the Electrochemical Society, 2013, 160(8): A1171-A1180. |
[53] | XU K.Electrolytes and interphases in Li-ion batteries and beyond.Chemical Reviews, 2014, 114(23): 11503-11618. |
[54] | JEONG J, LEE J N, PARK J K,et al.Stabilizing effect of 2-(triphenylphosphoranylidene)succinic anhydride as electrolyte additive on the lithium metal of lithium metal secondary batteries.Electrochimica Acta, 2015, 170: 353-359. |
[55] | MIAO R, YANG J, FENG X,et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility.Journal of Power Sources, 2014, 271: 291-297. |
[56] | XIANG H, SHI P, BHATTACHARYA P,et al.Enhanced charging capability of lithium metal batteries based on lithium bis (trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes.Journal of Power Sources, 2016, 318: 170-177. |
[57] | MCKINNON W R, DAHN J R.How to reduce the cointercalation of propylene carbonate in LixZrS2 and other layered compounds.Journal of the Electrochemical Society, 1985, 132(2): 364-366. |
[58] | JEONG S K, INABA M, IRIYAMA Y,et al. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions.Electrochemical and Solid-State Letters, 2003, 6(1): A13-A15. |
[59] | JEONG S K, SEO H Y, KIM D H,et al.Suppression of dendritic lithium formation by using concentrated electrolyte solutions.Electrochemistry Communications, 2008, 10(4): 635-638. |
[60] | SUO L, HU Y S, LI H,et al.A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.Nature Communications, 2013, 4(2): 1481. |
[61] | QIAN J, HENDERSON W A, XU W,et al.High rate and stable cycling of lithium metal anode.Nature Communications, 2015, 6: 6362. |
[62] | MATSUMOTO K, INOUE K, NAKAHARA K,et al. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte.Journal of Power Sources, 2013, 231(2): 234-238. |
[63] | LIANG H, LI H, WANG Z,et al.New binary room-temperature molten salt electrolyte based on urea and LiTFSI.The Journal of Physical Chemistry B, 2001, 105(41): 9966-9969. |
[64] | PAPPENFUS T M, HENDERSON W A, OWENS B B,et al.Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials.Journal of the Electrochemical Society, 2004, 151(2): A209-A215. |
[65] | TAMURA T, HACHIDA T, YOSHIDA K,et al.New glyme-cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries.Journal of Power Sources, 2010, 195(18): 6095-6100. |
[66] | TERADA S, MANDAI T, NOZAWA R,et al.Physicochemical properties of pentaglyme-sodium bis(trifluoromethanesulfonyl) amide solvate ionic liquid.Physical Chemistry Chemical Physics, 2014, 16(23): 11737-11746. |
[67] | MANDAI T, YOSHIDA K, TSUZUKI S,et al.Effect of ionic size on solvate stability of glyme-based solvate ionic liquids.Journal of Physical Chemistry B, 2015, 119(4): 1523-1534. |
[68] | YAMADA Y, YAEGASHI M, ABE T,et al.A superconcentrated ether electrolyte for fast-charging Li-ion batteries.Chemical Communications, 2013, 49(95): 11194-11196. |
[69] | HENDERSON W A, MCKENNA F, KHAN M A,et al.Glyme- lithium bis(trifluoromethanesulfonyl)imide and glyme-lithium bis (perfluoroethanesulfonyl)imide phase behavior and solvate structures.Chemistry of Materials, 2005, 17(9): 2284-2289. |
[70] | MCOWEN D W, SEO D M, BORODIN O,et al. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms.Energy & Environmental Science, 2013, 7(1): 416-426. |
[71] | AN S J, LI J, DANIEL C,et al.ChemInform abstract: the state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling.Cheminform, 2016, 105(28): 52-76. |
[72] | NIE M, ABRAHAM D P, SEO D M,et al. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate.The Journal of Physical Chemistry C, 2013, 117(48): 25381-25389. |
[73] | MATSUMOTO K, INOUE K, NAKAHARA K,et al.Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte.Journal of Power Sources, 2013, 231(2): 234-238. |
[74] | MCOWEN D W, SEO D M, BORODIN O,et al.Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms.Energy & Environmental Science, 2014, 7(1): 416-426. |
[75] | YOON H, HOWLETT P C, BEST A S,et al.Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte.Journal of the Electrochemical Society, 2013, 160(10): A1629-A1637. |
[76] | SUO L, BORODIN O, GAO T,et al.“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries.Science, 2015, 350(6263): 938-943. |
[77] | SUO L, BORODIN O, SUN W,et al.Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-salt” electrolyte.Angewandte Chemie International Edition, 2016, 55(25): 7136-7141. |
[78] | ZHENG J, LOCHALA J A, KWOK A,et al.Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications.Advanced Science, 2017, 4: 1700032. |
[79] | DOI T, SHIMIZU Y, HASHINOKUCHI M,et al.Dilution of highly concentrated LiBF4/propylene carbonate electrolyte solution with fluoroalkyl ethers for 5-V LiNi0.5Mn1.5O4positive electrodes.Journal of the Electrochemical Society, 2017, 164(1): A6412-A6416. |
[80] | HUANG F, MA G, WEN Z,et al.Enhancing metallic lithium batteries performance by tuning electrolyte solution structure.Journal of Materials Chemistry A, 2017, DOI: 10.1039/C7TA08274F. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHANG Jinghui, LU Xiaotong, MAO Haiyan, TIAN Yazhou, ZHANG Shanlin. Effect of Sintering Additives on Sintering Behavior and Conductivity of BaZr0.1Ce0.7Y0.2O3-δ Electrolytes [J]. Journal of Inorganic Materials, 2025, 40(1): 84-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||