Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (5): 501-506.DOI: 10.15541/jim20170287
• RESEARCH PAPER • Previous Articles Next Articles
WANG Jun-Xia, ZHAO Jian-Wei, QIN Li-Rong, ZHAO Bing-Ling, JIANG Zheng-Yan
Received:
2017-06-03
Revised:
2017-08-03
Published:
2018-05-20
Online:
2018-04-26
About author:
WANG Jun-Xia. E-mail: wangjx8686@163.com
Supported by:
CLC Number:
WANG Jun-Xia, ZHAO Jian-Wei, QIN Li-Rong, ZHAO Bing-Ling, JIANG Zheng-Yan. Synthesis and Supercapacitor Property of Ni-doped Co3O4 Nanowire Array[J]. Journal of Inorganic Materials, 2018, 33(5): 501-506.
Electrode materials | Current density | Specific capacitance | Ref. |
---|---|---|---|
Ni-doped Co3O4 nanowire array | 10.0 mA·cm-2 | 173.00 mF·cm-2 | This work |
ZrO2-WO3 nanotubular arrays | 10.0 mV·s-1 | 40.03 mF·cm-2 | [20] |
NiO nanoflake/glass electrodes | 10.0 mV·s-1 | 74.80 mF·cm-2 | [21] |
MnO2-TiO2/C nano arrays | 0.1 mA·cm-2 | 26.10 mF·cm-2 | [22] |
MnO2/TiO2 nanotube arrays | 64.0 mA·cm-2 | 40.40 mF·cm-2 | [23] |
Aligned carbon nanotubes | 800.0 mV·s-1 | 2.61 mF·cm-2 | [24] |
Table 1 Comparison of the capacitances between product in this study and other similar materials in literature
Electrode materials | Current density | Specific capacitance | Ref. |
---|---|---|---|
Ni-doped Co3O4 nanowire array | 10.0 mA·cm-2 | 173.00 mF·cm-2 | This work |
ZrO2-WO3 nanotubular arrays | 10.0 mV·s-1 | 40.03 mF·cm-2 | [20] |
NiO nanoflake/glass electrodes | 10.0 mV·s-1 | 74.80 mF·cm-2 | [21] |
MnO2-TiO2/C nano arrays | 0.1 mA·cm-2 | 26.10 mF·cm-2 | [22] |
MnO2/TiO2 nanotube arrays | 64.0 mA·cm-2 | 40.40 mF·cm-2 | [23] |
Aligned carbon nanotubes | 800.0 mV·s-1 | 2.61 mF·cm-2 | [24] |
[1] | ZHANG L L, ZHOU R, ZHAO X S.Graphene-based materials as supercapacitor electrodes.J. Mater. Chem., 2010, 20(29): 5983-5992. |
[2] | MA X J, KONG L B, ZHANG W B.Design and synthesis of 3D Co3O4@MMoO4 (M= Ni, Co) nanocomposites as high-performance supercapacitor electrodes.Electrochimica. Acta., 2014, 130: 660-669. |
[3] | GAO Z, WANG J, LI Z,et al. Graphene nanosheet/Ni2+/Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor. Chem. Mater., 2011, 23(15): 3509-3516. |
[4] | XU K, YANG J, LI S.Facile synthesis of hierarchical mesoporous NiCo2O4 nanoflowers with large specific surface area for high- performance supercapacitors.Mater. Lett., 2017, 187: 129-132. |
[5] | RAMEZANI M, FATHI M, MAHBOUBI F.Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications.Electrochimica. Acta., 2015, 174: 345-355. |
[6] | PAN X, ZHAO Y, REN G.Highly conductive VO2 treated with hydrogen for supercapacitors.Chem. Commun., 2013, 49(38): 3943-3945. |
[7] | BURKE A.R&D considerations for the performance and application of electrochemical capacitors.Electrochimica. Acta., 2007, 53(3): 1083-1091. |
[8] | GAO Y, JIN H, LIN Q.Highly flexible and transferable supercapacitors with ordered three-dimensional MnO2/Au/MnO2 nanospike arrays.J. Mater. Chem. A, 2015, 3(19): 10199-10204. |
[9] | ZHANG Y, FENG H, WU X,et al. Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energy, 2009, 34(11): 4889-4899. |
[10] | JOTHI P R, SHANTHI K, SALUNKHE R R,et al. Synthesis and characterization of α-NiMoO4 nanorods for supercapacitor application. Eur. J. Inorg. Chem., 2015, 2015(22): 3694-3699. |
[11] | VIJAYANAND S, KANNAN R, POTDAR H S,et al. Porous Co3O4 nanorods as superior electrode material for supercapacitors and rechargeable Li-ion batteries. J. Appl. Electrochem., 2013, 43(10): 995-1003. |
[12] | SU L, WANG Y, SHA Y, et al. Ternary active site Co3O4/NiO/MnO2 electrode with enhanced capacitive performances. J. Alloys Compd., 2016, 656: 585-589. |
[13] | YU M, WANG Z, HOU C,et al. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater., 2017, 29(15): 1602868. |
[14] | JIANG P, WANG Q, DAI J,et al. Fabrication of NiO@Co3O4 core/shell nanofibres for high-performance supercapacitors. Mater. Lett., 2017, 188: 69-72. |
[15] | XU W, CHEN J, YU M,et al. Sulphur-doped Co3O4 nanowires as an advanced negative electrode for high-energy asymmetric supercapacitors. J. Mater. Chem. A, 2016, 4(28): 10779-10785. |
[16] | SUN S, WANG P, WANG S,et al. Fabrication of MnO2/ nanoporous 3D graphene for supercapacitor electrodes. Mater. Lett., 2015, 145: 141-144. |
[17] | DENG D, KIM B S, GOPIRAMAN M, et al. Needle-like MnO2/activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors. RSC Adv., 2015, 5(99): 81492-81498. |
[18] | XIE L, HU Z, LV C,et al. CoxNi1-x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials. Electrochim. Acta, 2012, 78: 205-211. |
[19] | VAZQUEZ-ARENAS J, PRITZKER M.Steady-state model for anomalous Co-Ni electrodeposition in sulfate solutions.Electrochim. Acta, 2012, 66: 139-150. |
[20] | WHITMAN S R, RAJA K S.Formation and electrochemical characterization of anodic ZrO2-WO3 mixed oxide nanotubular arrays.Surf. Sci., 2014, 303: 406-418. |
[21] | CHEN Y, WANG Y, SUN P,et al. Nickel oxide nanoflake-based bifunctional glasselectrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A, 2015, 3: 20614-20618. |
[22] | GAO B, LI X, MA Y,et al. MnO2-TiO2/C nanocomposite arrays for high-performance supercapacitor electrodes. Thin Solid Films, 2015, 584: 61-65. |
[23] | HUANG Y G, ZHANG X H, CHEN X B,et al. Electrochemical properties of MnO2-deposited TiO2 nanotube arrays 3D composite electrode for supercapacitors. Int. J. Hydrogen Energ., 2015, 40(41): 14331-14337. |
[24] | DOGRU I B, DURUKAN M B, TUREL O,et al. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils. Prog. Nat. Sci-Mater., 2016, 26(3): 232-236. |
[25] | LI Y, HASIN P, WU Y.NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater., 2010, 22(17): 1926-1929. |
[1] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[2] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[3] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[4] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[5] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[6] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
[7] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[8] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[9] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[10] | LI Guanglan, WANG Tianyu, LIU Yichen, LU Zhongfa. Layered NiFeCo-LDH-Ti6C3.75 Catalyst: Preparation and Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2023, 38(7): 823-829. |
[11] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[12] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[13] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[14] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[15] | WANG Zhiqiang, WU Ji’an, CHEN Kunfeng, XUE Dongfeng. Large-size Er,Yb:YAG Single Crystal: Growth and Performance [J]. Journal of Inorganic Materials, 2023, 38(3): 329-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||