Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (11): 1201-1207.DOI: 10.15541/jim20180061
Special Issue: 药物载体与防护材料
• Orginal Article • Previous Articles Next Articles
ZHENG He, ZHONG Jin-Yi, LIU Jing-Quan, ZHANG Zhe, CUI Yan, ZHENG Yong-Chao
Received:
2018-02-02
Revised:
2018-05-03
Published:
2018-11-16
Online:
2018-10-20
About author:
ZHENG He. E-mail: fhyjyzh@126.com
CLC Number:
ZHENG He, ZHONG Jin-Yi, LIU Jing-Quan, ZHANG Zhe, CUI Yan, ZHENG Yong-Chao. Adsorption of Enzyme for Sulfur Mustard Decontamination by Mesocellular Foam[J]. Journal of Inorganic Materials, 2018, 33(11): 1201-1207.
Sample | BET surface area/(m2•g-1) | Pore size /nm | Window size/nm | Pore volume /(cm3•g-1) |
---|---|---|---|---|
MCF0 | 858.2 | 6.8 | 6.6 | 1.2 |
MCF1 | 538.4 | 8.5 | 6.8 | 0.9 |
MCF2 | 544.3 | 11.0 | 6.0 | 1.1 |
MCF3 | 507.3 | 12.9 | 4.9 | 1.3 |
MCF4 | 606.7 | 16.6 | 7.7 | 1.8 |
MCF5 | 770.3 | 17.3 | 8.2 | 2.3 |
MCF6 | 779.5 | 14.1 | 8.4 | 2.1 |
Table 1 BET results of MCF serial materials
Sample | BET surface area/(m2•g-1) | Pore size /nm | Window size/nm | Pore volume /(cm3•g-1) |
---|---|---|---|---|
MCF0 | 858.2 | 6.8 | 6.6 | 1.2 |
MCF1 | 538.4 | 8.5 | 6.8 | 0.9 |
MCF2 | 544.3 | 11.0 | 6.0 | 1.1 |
MCF3 | 507.3 | 12.9 | 4.9 | 1.3 |
MCF4 | 606.7 | 16.6 | 7.7 | 1.8 |
MCF5 | 770.3 | 17.3 | 8.2 | 2.3 |
MCF6 | 779.5 | 14.1 | 8.4 | 2.1 |
Kinetic model | Equation | Parameters | |
---|---|---|---|
Pseudo- first-order | \(\ln ({{q}_{e}}-{{q}_{t}})=ln({{q}_{e}})-{{k}_{1}}t\) | qe=79.58(mg•g-1), k1=0.25(min-1), R2=0.9300, RMSE=7.38 | |
Pseudo- second-order | \(\frac{t}{{{q}_{t}}}=\frac{1}{{{k}_{2}}q_{e}^{2}}+\frac{t}{{{q}_{e}}}\) | qe=83.41(mg•g-1), k2=0.01(mg•g-1•min-1), R2=0.9773, RMSE=4.10 | |
Elovich | \({{q}_{t}}=\frac{\ln (\alpha \beta )}{\beta }+\frac{\ln t}{\beta }\) | α=33.52(mg•g-1•min-1), β=9.99(mg•g-1), R2=0.9860, RMSE=3.18 |
Table 2 Fitting of adsorption kinetic curve
Kinetic model | Equation | Parameters | |
---|---|---|---|
Pseudo- first-order | \(\ln ({{q}_{e}}-{{q}_{t}})=ln({{q}_{e}})-{{k}_{1}}t\) | qe=79.58(mg•g-1), k1=0.25(min-1), R2=0.9300, RMSE=7.38 | |
Pseudo- second-order | \(\frac{t}{{{q}_{t}}}=\frac{1}{{{k}_{2}}q_{e}^{2}}+\frac{t}{{{q}_{e}}}\) | qe=83.41(mg•g-1), k2=0.01(mg•g-1•min-1), R2=0.9773, RMSE=4.10 | |
Elovich | \({{q}_{t}}=\frac{\ln (\alpha \beta )}{\beta }+\frac{\ln t}{\beta }\) | α=33.52(mg•g-1•min-1), β=9.99(mg•g-1), R2=0.9860, RMSE=3.18 |
Isotherm model | Equation | Parameters |
---|---|---|
Langmuir | \({{q}_{e}}=\frac{{{q}_{\max }}\times {{C}_{e}}}{{{K}_{\text{l}}}+{{C}_{e}}}\) | qmax=91.49(mg•g-1), Kl=0.01(mL•mg-1), R2=0.9800, RMSE=4.68 |
Freundlich | \({{q}_{e}}={{K}_{\text{f}}}\times C_{e}^{1/n}\) | Kf=102.58(mg•g-1), n=0.11, R2=0.9436, RMSE=10.94 |
Tempkin | \({{q}_{e}}\text{=}\frac{RT}{{{b}_{T}}}\times \ln ({{A}_{\text{T}}}\times {{C}_{e}})\) | AT=175388.80 (mL•mg-1), bT=295.93 (J•mol-1), R2=0.9119, RMSE=9.8 |
Sips | \({{q}_{e}}=\frac{{{K}_{\text{s}}}C_{e}^{{{\beta }_{s}}}}{1+{{\alpha }_{\text{s}}}\times C_{e}^{{{\beta }_{s}}}}\) | Ks=236338.20(mL•mg-1), βs=1.26, αs=2612.06, R2=0.9844, RMSE=4.13 |
Redlich- Peterson | \({{q}_{e}}=\frac{{{K}_{\text{R}}}\times {{C}_{e}}}{1+{{\alpha }_{\text{R}}}\times C_{e}^{g}}\) | KR=39323.82(mL•mg-1), αR=449.02(mg-1), g=1.03, R2=0.9832, RMSE=4.28 |
Table 3 Fitting of adsorption isotherm curve
Isotherm model | Equation | Parameters |
---|---|---|
Langmuir | \({{q}_{e}}=\frac{{{q}_{\max }}\times {{C}_{e}}}{{{K}_{\text{l}}}+{{C}_{e}}}\) | qmax=91.49(mg•g-1), Kl=0.01(mL•mg-1), R2=0.9800, RMSE=4.68 |
Freundlich | \({{q}_{e}}={{K}_{\text{f}}}\times C_{e}^{1/n}\) | Kf=102.58(mg•g-1), n=0.11, R2=0.9436, RMSE=10.94 |
Tempkin | \({{q}_{e}}\text{=}\frac{RT}{{{b}_{T}}}\times \ln ({{A}_{\text{T}}}\times {{C}_{e}})\) | AT=175388.80 (mL•mg-1), bT=295.93 (J•mol-1), R2=0.9119, RMSE=9.8 |
Sips | \({{q}_{e}}=\frac{{{K}_{\text{s}}}C_{e}^{{{\beta }_{s}}}}{1+{{\alpha }_{\text{s}}}\times C_{e}^{{{\beta }_{s}}}}\) | Ks=236338.20(mL•mg-1), βs=1.26, αs=2612.06, R2=0.9844, RMSE=4.13 |
Redlich- Peterson | \({{q}_{e}}=\frac{{{K}_{\text{R}}}\times {{C}_{e}}}{1+{{\alpha }_{\text{R}}}\times C_{e}^{g}}\) | KR=39323.82(mL•mg-1), αR=449.02(mg-1), g=1.03, R2=0.9832, RMSE=4.28 |
[1] | GUO N, ZHAO Y Z, ZHONG J Y, et al.Efficient expression and fermentation conditions optimization of mustard gas hydrolase.Research Progress on Chemical Problems in Public Security, 2015, 273-280. |
[2] | GUO N, DONG L, LIU J Q, et al.Catalytic hydrolysis of sulfur mustard by haloalkane dehalogenases.Environmental Chemistry, 2015, 34(7): 1363-1370. |
[3] | ZHAO Y Z, ZHONG J Y, GUO N, et al.Improvement in the thermostability and activity of DhaA against sulfur mustard by multipoint mutagenesis.Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 714-718. |
[4] | ZHAO Y Z, YU W L, ZHENG H, et al.PEGylation with the thiosuccinimido butylamine linker significantly increases the stability of haloalkane dehalogenase DhaA.Biotechnology Journal, 2017, 254: 25-33. |
[5] | NAGATA Y, OHTSUBO Y, TSUDA M.Properties and biotechnological applications of natural and engineered haloalkane dehalogenase.Applied Microbiology and Biotechnology, 2015, 99(23): 9865-9881. |
[6] | STEPANKOVA V, DAMBORSKY J, CHALOUPKOVA R.Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases.Biotechnology Journal, 2013, 8: 633-752. |
[7] | DIAZ J F, BULKUS K J.Enzyme immobilization in MCM-41 molecular sieve.Journal of Molecular Catalysis B: Enzymatic, 1996, 2(2/3): 115-126. |
[8] | TAKIMOTO A, SHIOMI T, INO K, et al.Encapsulation of cellulase with mesoporous silica (SBA-15).Microporous and Mesoporous Materials, 2008, 116(1): 601-606. |
[9] | VINU A, GOKULAKRISHNAN N, BALASUBRAMANIAN V V, et al.Three-dimensional ultralarge-pore Ia3d mesoporous silica with various pore diameters and their application in biomolecule immobilization.Chemistry-A European Journal, 2008, 14(36): 11529-11538. |
[10] | WEBER E, SIRIM D, SCHREIBER T, et al.Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diameters.Journal of Molecular Catalysis B: Enzymatic, 2010, 64(1/2): 29-37. |
[11] | AGUILA S, VAZQUEZ-DUHALT R, COVARRUBIAS C, et al.Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports.Journal of Molecular Catalysis B: Enzymatic, 2011, 70(3/4): 81-87. |
[12] | WASHMON-KRIEL L, JIMENEZ V L, BALKUS K J.Cytochrome c immobilization into mesoporous molecular sieves.Journal of Molecular Catalysis B: Enzymatic, 2000, 10(5): 453-469. |
[13] | SERRA E, MAYORAL A, SAKAMOTO Y, et al.Immobilization of lipase in ordered mesoporous materials: effect of textural and structural parameters.Microporous and Mesoporous Materials, 2008, 114(1): 201-213. |
[14] | SCHMIDT-WINKEL P, LUKENS W W, ZHAO D Y, et al.Mesocellular siliceous foams with uniformly sized cell and windows.Journal of the American Chemical Society, 1999, 121(1): 254-255. |
[15] | IWASAKI I, UTSUMI S, HAGINO K, et al.A new spectrophotometric method for the determination of small amounts of chloride using the mercuric thiocyanate method.Bulletin of the Chemical Society of Japan, 1956, 29(8): 860-864. |
[16] | 赵渊中. 脱卤酶对芥子气的催化活性和稳定性研究. 北京: 防化研究院硕士学位论文, 2016. |
[17] | ROSENHOLM J M, CZURYSZKIEWICZ T, KLEITZ F, et al.On the nature of bronsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution.Langmuir, 2007, 23(8): 4315-4323. |
[18] | LAGERGREN S, SVENSKA B K. On the theory of so-called adsorption of materials. Swedish Academy of Science, 1898, 24: 1-13. |
[19] | HO Y S, MCKAY G.Pseudo-second order model for sorption processes.Process Biochemistry, 1999, 34(5): 451-465. |
[20] | AHARONI C, UNGARISH M.Kinetics of activated chemisorptions. Part I: The non-Elvichian part of the isotherm. Journal of Chemical Society Faraday Transactions, 1976, 72: 265-268. |
[21] | MARTINS A C, PEZOTI O, CAZRTTA A L, et al.Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies.Chemical Engineering Journal, 2015, 260: 291-299. |
[22] | WEBER W J, MORRIS J.Kinetics of adsorption on carbon from solution.ASCE Sanitary Engineering Division Journal, 1963, 1(2): 1-2. |
[23] | LANGMUIR I.The constitution and fundamental properties of solids and liquids.Journal of the American Chemical Society, 1916, 38(11): 2221-2295 |
[24] | FREUNDLICH H M F. Over the adsorption in solution.Journal of Physical Chemistry, 1906, 57: 385-471. |
[25] | TEMPKIN M I, PYZHEV V.Kinetics of ammonia synthesis on promoted iron catalyst.Acta Physico-Chimica USSR, 1940, 12: 327-356. |
[26] | SIPS R.Combined form of Langmuir and Freundlich equations.Journal of Chemical Physics, 1948, 16: 490-495. |
[27] | REDLICH O, PETERSON D L.A useful adsorption isotherm.Journal of Physical Chemistry, 1959, 63(6): 1024-1026. |
[28] | FOO K Y, HAMEED B H.Insights into the modeling of adsorption isotherm systems.Chemical Engineering Journal, 2010, 156(1): 2-10. |
[29] | ZIVKOVIC L T I, ZIVKOVIC L S, BABIC B M, et al. Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/ macroporous silica and zirconia.Biological Engineering Journal, 2015, 93: 73-83. |
[30] | DREIFKE M, FRIED D I, BRIELER F J, et al.Kinetic investigations of 6-phosphogluconate dehydrogenase confined in mesoporous silica.Journal of Molecular Catalysis B: Enzymatic, 2016, 132: 5-15. |
[1] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[2] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[3] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[4] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[5] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[6] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[7] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[8] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[9] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[10] | DAI Jieyan, FENG Aihu, MI Le, YU Yang, CUI Yuanyuan, YU Yun. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations [J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244. |
[11] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[12] | LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine [J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050. |
[13] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[14] | YU Xiangkun, LIU Kun, LI Zhipeng, ZHAO Yulu, SHEN Jinyou, MAO Ping, SUN Aiwu, JIANG Jinlong. Efficient Adsorption of Radioactive Iodide by Copper/Palygorskite Composite [J]. Journal of Inorganic Materials, 2021, 36(8): 856-864. |
[15] | SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation [J]. Journal of Inorganic Materials, 2021, 36(6): 561-569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||