Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (10): 1043-1050.DOI: 10.15541/jim20220011
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Cheng1,2,3(), ZHAO Qian2,3, MOU Zhiwei2,3, LEI Jiehong1(
), DUAN Tao2,3(
)
Received:
2022-01-07
Revised:
2022-03-06
Published:
2022-10-20
Online:
2022-04-07
Contact:
DUAN Tao, professor. E-mail: duant@ustc.edu.cn;About author:
LIU Cheng (1994-), male, Master candidate. E-mail: liucheng536@163.com
Supported by:
CLC Number:
LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine[J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050.
Fig. 4 (a-c) SEM images of Bi@SiOCNF-5, Bi@SiOCNF-8, Bi@SiOCNF-10, (d-e) EDS spectrum and mappings of Bi@SiOCNF-8, and (f-h) TEM images of Bi@SiOCNF-8
Adsorbent | T/℃ | Adsorption Capacity/(mg·g-1) | Ref. |
---|---|---|---|
HT | 40 | 1400 | [ |
PU1 | 70 | 1300 | [24] |
Cu-BTC@PES | 75 | 639 | [ |
Al-O-F | 90 | 49 | [ |
Ag0Z | 100-200 | 156 | [ |
Ag-ETS-2 | 80 | 255 | [ |
Ag@Mon-POF | 70 | 250 | [ |
Bi6O7 | 25 | 285 | [ |
Ag-loaded aerogel | 150 | 410 | [ |
Bi-BP2-O | 200 | 468 | [ |
Bi@SiOCNF-10 | 75 | 515.2 | This work |
Table 1 Adsorption performance of different adsorbents for iodine
Adsorbent | T/℃ | Adsorption Capacity/(mg·g-1) | Ref. |
---|---|---|---|
HT | 40 | 1400 | [ |
PU1 | 70 | 1300 | [24] |
Cu-BTC@PES | 75 | 639 | [ |
Al-O-F | 90 | 49 | [ |
Ag0Z | 100-200 | 156 | [ |
Ag-ETS-2 | 80 | 255 | [ |
Ag@Mon-POF | 70 | 250 | [ |
Bi6O7 | 25 | 285 | [ |
Ag-loaded aerogel | 150 | 410 | [ |
Bi-BP2-O | 200 | 468 | [ |
Bi@SiOCNF-10 | 75 | 515.2 | This work |
Fig. 7 (a) XRD pattern of I-Bi@SiOCNF, (b) XPS survey spectra, corresponding (c) Bi4f Spectra of I-Bi@SiOCNF and Bi@SiOCNF and (d) I3d spectra of I-Bi@SiOCNF
Fig. 8 (a-c) SEM images of I-Bi@SiOCNF-5, I-Bi@SiOCNF-8, I-Bi@SiOCNF-10, (d, e) EDS spectrum and mappings of I-Bi@SiOCNF-8, and (f-h) TEM images of I-Bi@SiOCNF-8
[1] | SOELBERG N R, GARN T G, GREENHALGH M R, et al. Radioactive iodine and krypton control for nuclear fuel reprocessing. facilities. Science and Technology of Nuclear Installations, 2013, 2013: 702496 |
[2] |
SABRI M A, AL-SAYAH M H, SEN S, et al. Fluorescent aminal linked porous organic polymer for reversible iodine capture and sensing. Scientific Reports, 2020, 10(1): 15943.
DOI PMID |
[3] |
UYBA V, SAMOYLOV A, SHINKAREV S. Comparative analysis of the countermeasures taken to mitigate exposure of the public to radioiodine following the Chernobyl and Fukushima accidents: lessons from both accidents. Journal of Radiation Research, 2018, 59(suppl_2): ii40-ii47.
DOI URL |
[4] |
SUNAVALA-DOSSABHOY G. Radioactive iodine: an unappreciated threat to salivary gland function. Oral Diseases, 2018, 24(1/2): 198-201.
DOI URL |
[5] |
FENG Y, WEI G, LIU Y, et al. Crystallization behavior of boron in low-temperature immobilization of iodine waste. Journal of Solid State Chemistry, 2022, 305: 122698.
DOI URL |
[6] |
RILEY B J, VIENNA J D, STRACHAN D M, et al. Materials and processes for the effective capture and immobilization of radioiodine: a review. Journal of Nuclear Materials, 2016, 470: 307-326.
DOI URL |
[7] |
BEGHI I, LIND T, PRASSER H M. Experimental studies on retention of iodine in a wet scrubber. Nuclear Engineering and Design, 2018, 326: 234-243.
DOI URL |
[8] |
HUVE J, RYZHIKOV A, NOUALI H, et al. Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Advances, 2018, 8(51): 29248-29273.
DOI URL |
[9] |
ZHOU J, HAO S, GAO L, et al. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Annals of Nuclear Energy, 2014, 72: 237-241.
DOI URL |
[10] |
ALSALBOKH M, FAKERI N, LAWSON S, et al. Adsorption of iodine from aqueous solutions by aminosilane-grafted mesoporous alumina. Chemical Engineering Journal, 2021, 415: 128968.
DOI URL |
[11] |
CHONG S, RILEY B J, KUANG W, et al. Iodine capture with mechanically robust heat-treated Ag-Al-Si-O xerogel sorbents. ACS Omega, 2021, 6(17): 11628-11638.
DOI PMID |
[12] |
LIN G, ZHU L, DUAN T, et al. Efficient capture of iodine by a polysulfide-inserted inorganic NiTi-layered double hydroxides. Chemical Engineering Journal, 2019, 378: 122181.
DOI URL |
[13] |
PAN X, DING C, ZHANG Z, et al. Functional porous organic polymer with high S and N for reversible iodine capture. Microporous and Mesoporous Materials, 2020, 300: 110161.
DOI URL |
[14] |
ASSAAD T, ASSFOUR B. Metal organic framework MIL-101 for radioiodine capture and storage. Journal of Nuclear Materials, 2017, 493: 6-11.
DOI URL |
[15] |
TANG Y, HUANG H, LI J, et al. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture. Journal of Materials Chemistry A, 2019, 7(31): 18324-18329.
DOI URL |
[16] | AKIYAMAA D, ISHIIA T, MASAKIA Y, et al. Sorption and desorption of radioactive organic iodine by silver doped zeolite and zeolite X. Journal of Nuclear and Radiochemical Sciences, 2021, 21: 1-6. |
[17] |
REDA A T, ZHANG D, XU X, et al. Bismuth-impregnated aluminum/copper oxide-pillared montmorillonite for efficient vapor iodine sorption. Separation and Purification Technology, 2021, 270: 118848.
DOI URL |
[18] | REDA A T, PAN M, ZHANG D, et al. Bismuth-based materials for iodine capture and storage: a review. Journal of Environmental Chemical Engineering, 2021: 105279. |
[19] |
GU G E, BAE J, PARK H S, et al. Development of the functionalized nanocomposite materials for adsorption/decontamination of radioactive pollutants. Materials, 2021, 14(11): 2896.
DOI URL |
[20] |
PHILIPPOU K, CHRISTOU C N, SOCOLIUC V, et al. Superparamagnetic polyvinylpyrrolidone/chitosan/Fe3O4 electrospun nanofibers as effective U(VI) adsorbents. Journal of Applied Polymer Science, 2021, 138(15): 50212.
DOI URL |
[21] |
LIU S, KANG S, WANG H, et al. Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances. Chemical Engineering Journal, 2016, 289: 219-230.
DOI URL |
[22] |
YANG J H, SHIN J M, PARK J J, et al. Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas. Journal of Nuclear Materials, 2015, 457: 1-8.
DOI URL |
[23] |
DAS G, SKORJANC T, SHARMA S K, et al. Viologen-based conjugated covalent organic networks via Zincke reaction. Journal of the American Chemical Society, 2017, 139(28): 9558-9565.
DOI URL |
[24] |
WANG Y, SOTZING G A, WEISS R. Sorption of iodine by polyurethane and melamine-formaldehyde foams using iodine sublimation and iodine solutions. Polymer, 2006, 47(8): 2728-2740.
DOI URL |
[25] | ZHAO Q, ZHU L, LIN G, et al. Controllable synthesis of porous Cu-BTC@polymer composite beads for iodine capture. ACS Applied Materials & Interfaces, 2019, 11(45): 42635-42645. |
[26] |
MILLER A, WANG Y. Al-O-F materials as novel adsorbents for gaseous radioiodine capture. Journal of Environmental Radioactivity, 2014, 133: 35-39.
DOI PMID |
[27] |
NAN Y, TAVLARIDES L L, DEPAOLI D W. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: experiments and modeling. AIChE Journal, 2017, 63(3): 1024-1035.
DOI URL |
[28] |
WU L, SAWADA J A, KUZNICKI D B, et al. Iodine adsorption on silver-exchanged titania-derived adsorbents. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302(1): 527-532.
DOI URL |
[29] |
KATSOULIDIS A P, HE J, KANATZIDIS M G. Functional monolithic polymeric organic framework aerogel as reducing and hosting media for Ag nanoparticles and application in capturing of iodine vapors. Chemistry of Materials, 2012, 24(10): 1937-1943.
DOI URL |
[30] | CHONG S, RILEY B J, PETERSON J A, et al. Gaseous iodine sorbents: a comparison between Ag-loaded aerogel and xerogel scaffolds. ACS Applied Materials & Interfaces, 2020, 12(23): 26127-26136. |
[31] |
ZOU H, YI F, SONG M, et al. Novel synthesis of Bi-Bi2O3-TiO2-C composite for capturing iodine-129 in off-gas. Journal of Hazardous Materials, 2019, 365: 81-87.
DOI URL |
[32] |
LI G, HUANG Y, LIN J, et al. Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers. Chemical Engineering Journal, 2020, 382: 122833.
DOI URL |
[1] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[5] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[6] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[7] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[8] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[9] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[10] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[11] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[12] | DAI Jieyan, FENG Aihu, MI Le, YU Yang, CUI Yuanyuan, YU Yun. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations [J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244. |
[13] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[14] | YANG Huiping, ZHOU Xuefan, FANG Haojie, ZHANG Xiaoyun, LUO Hang, ZHANG Dou. Field-induced Strain Property of Lead-free Ferroelectric Ceramics Based on Sodium Bismuth Titanate [J]. Journal of Inorganic Materials, 2022, 37(6): 603-610. |
[15] | CAI Jia, HUANG Gaoxu, JIN Xiaopan, WEI Chi, MAO Jiayi, LI Yongsheng. In-situ Modification of Carbon Nanotubes with Metallic Bismuth Nanoparticles for Uniform Lithium Deposition [J]. Journal of Inorganic Materials, 2022, 37(12): 1337-1343. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||