Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (10): 1043-1050.DOI: 10.15541/jim20220011
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Cheng1,2,3(), ZHAO Qian2,3, MOU Zhiwei2,3, LEI Jiehong1(), DUAN Tao2,3()
Received:
2022-01-07
Revised:
2022-03-06
Published:
2022-10-20
Online:
2022-04-07
Contact:
DUAN Tao, professor. E-mail: duant@ustc.edu.cn;About author:
LIU Cheng (1994-), male, Master candidate. E-mail: liucheng536@163.com
Supported by:
CLC Number:
LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine[J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050.
Fig. 4 (a-c) SEM images of Bi@SiOCNF-5, Bi@SiOCNF-8, Bi@SiOCNF-10, (d-e) EDS spectrum and mappings of Bi@SiOCNF-8, and (f-h) TEM images of Bi@SiOCNF-8
Adsorbent | T/℃ | Adsorption Capacity/(mg·g-1) | Ref. |
---|---|---|---|
HT | 40 | 1400 | [ |
PU1 | 70 | 1300 | [24] |
Cu-BTC@PES | 75 | 639 | [ |
Al-O-F | 90 | 49 | [ |
Ag0Z | 100-200 | 156 | [ |
Ag-ETS-2 | 80 | 255 | [ |
Ag@Mon-POF | 70 | 250 | [ |
Bi6O7 | 25 | 285 | [ |
Ag-loaded aerogel | 150 | 410 | [ |
Bi-BP2-O | 200 | 468 | [ |
Bi@SiOCNF-10 | 75 | 515.2 | This work |
Table 1 Adsorption performance of different adsorbents for iodine
Adsorbent | T/℃ | Adsorption Capacity/(mg·g-1) | Ref. |
---|---|---|---|
HT | 40 | 1400 | [ |
PU1 | 70 | 1300 | [24] |
Cu-BTC@PES | 75 | 639 | [ |
Al-O-F | 90 | 49 | [ |
Ag0Z | 100-200 | 156 | [ |
Ag-ETS-2 | 80 | 255 | [ |
Ag@Mon-POF | 70 | 250 | [ |
Bi6O7 | 25 | 285 | [ |
Ag-loaded aerogel | 150 | 410 | [ |
Bi-BP2-O | 200 | 468 | [ |
Bi@SiOCNF-10 | 75 | 515.2 | This work |
Fig. 7 (a) XRD pattern of I-Bi@SiOCNF, (b) XPS survey spectra, corresponding (c) Bi4f Spectra of I-Bi@SiOCNF and Bi@SiOCNF and (d) I3d spectra of I-Bi@SiOCNF
Fig. 8 (a-c) SEM images of I-Bi@SiOCNF-5, I-Bi@SiOCNF-8, I-Bi@SiOCNF-10, (d, e) EDS spectrum and mappings of I-Bi@SiOCNF-8, and (f-h) TEM images of I-Bi@SiOCNF-8
[1] | SOELBERG N R, GARN T G, GREENHALGH M R, et al. Radioactive iodine and krypton control for nuclear fuel reprocessing. facilities. Science and Technology of Nuclear Installations, 2013, 2013: 702496 |
[2] |
SABRI M A, AL-SAYAH M H, SEN S, et al. Fluorescent aminal linked porous organic polymer for reversible iodine capture and sensing. Scientific Reports, 2020, 10(1): 15943.
DOI PMID |
[3] |
UYBA V, SAMOYLOV A, SHINKAREV S. Comparative analysis of the countermeasures taken to mitigate exposure of the public to radioiodine following the Chernobyl and Fukushima accidents: lessons from both accidents. Journal of Radiation Research, 2018, 59(suppl_2): ii40-ii47.
DOI URL |
[4] |
SUNAVALA-DOSSABHOY G. Radioactive iodine: an unappreciated threat to salivary gland function. Oral Diseases, 2018, 24(1/2): 198-201.
DOI URL |
[5] |
FENG Y, WEI G, LIU Y, et al. Crystallization behavior of boron in low-temperature immobilization of iodine waste. Journal of Solid State Chemistry, 2022, 305: 122698.
DOI URL |
[6] |
RILEY B J, VIENNA J D, STRACHAN D M, et al. Materials and processes for the effective capture and immobilization of radioiodine: a review. Journal of Nuclear Materials, 2016, 470: 307-326.
DOI URL |
[7] |
BEGHI I, LIND T, PRASSER H M. Experimental studies on retention of iodine in a wet scrubber. Nuclear Engineering and Design, 2018, 326: 234-243.
DOI URL |
[8] |
HUVE J, RYZHIKOV A, NOUALI H, et al. Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Advances, 2018, 8(51): 29248-29273.
DOI URL |
[9] |
ZHOU J, HAO S, GAO L, et al. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Annals of Nuclear Energy, 2014, 72: 237-241.
DOI URL |
[10] |
ALSALBOKH M, FAKERI N, LAWSON S, et al. Adsorption of iodine from aqueous solutions by aminosilane-grafted mesoporous alumina. Chemical Engineering Journal, 2021, 415: 128968.
DOI URL |
[11] |
CHONG S, RILEY B J, KUANG W, et al. Iodine capture with mechanically robust heat-treated Ag-Al-Si-O xerogel sorbents. ACS Omega, 2021, 6(17): 11628-11638.
DOI PMID |
[12] |
LIN G, ZHU L, DUAN T, et al. Efficient capture of iodine by a polysulfide-inserted inorganic NiTi-layered double hydroxides. Chemical Engineering Journal, 2019, 378: 122181.
DOI URL |
[13] |
PAN X, DING C, ZHANG Z, et al. Functional porous organic polymer with high S and N for reversible iodine capture. Microporous and Mesoporous Materials, 2020, 300: 110161.
DOI URL |
[14] |
ASSAAD T, ASSFOUR B. Metal organic framework MIL-101 for radioiodine capture and storage. Journal of Nuclear Materials, 2017, 493: 6-11.
DOI URL |
[15] |
TANG Y, HUANG H, LI J, et al. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture. Journal of Materials Chemistry A, 2019, 7(31): 18324-18329.
DOI URL |
[16] | AKIYAMAA D, ISHIIA T, MASAKIA Y, et al. Sorption and desorption of radioactive organic iodine by silver doped zeolite and zeolite X. Journal of Nuclear and Radiochemical Sciences, 2021, 21: 1-6. |
[17] |
REDA A T, ZHANG D, XU X, et al. Bismuth-impregnated aluminum/copper oxide-pillared montmorillonite for efficient vapor iodine sorption. Separation and Purification Technology, 2021, 270: 118848.
DOI URL |
[18] | REDA A T, PAN M, ZHANG D, et al. Bismuth-based materials for iodine capture and storage: a review. Journal of Environmental Chemical Engineering, 2021: 105279. |
[19] |
GU G E, BAE J, PARK H S, et al. Development of the functionalized nanocomposite materials for adsorption/decontamination of radioactive pollutants. Materials, 2021, 14(11): 2896.
DOI URL |
[20] |
PHILIPPOU K, CHRISTOU C N, SOCOLIUC V, et al. Superparamagnetic polyvinylpyrrolidone/chitosan/Fe3O4 electrospun nanofibers as effective U(VI) adsorbents. Journal of Applied Polymer Science, 2021, 138(15): 50212.
DOI URL |
[21] |
LIU S, KANG S, WANG H, et al. Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances. Chemical Engineering Journal, 2016, 289: 219-230.
DOI URL |
[22] |
YANG J H, SHIN J M, PARK J J, et al. Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas. Journal of Nuclear Materials, 2015, 457: 1-8.
DOI URL |
[23] |
DAS G, SKORJANC T, SHARMA S K, et al. Viologen-based conjugated covalent organic networks via Zincke reaction. Journal of the American Chemical Society, 2017, 139(28): 9558-9565.
DOI URL |
[24] |
WANG Y, SOTZING G A, WEISS R. Sorption of iodine by polyurethane and melamine-formaldehyde foams using iodine sublimation and iodine solutions. Polymer, 2006, 47(8): 2728-2740.
DOI URL |
[25] | ZHAO Q, ZHU L, LIN G, et al. Controllable synthesis of porous Cu-BTC@polymer composite beads for iodine capture. ACS Applied Materials & Interfaces, 2019, 11(45): 42635-42645. |
[26] |
MILLER A, WANG Y. Al-O-F materials as novel adsorbents for gaseous radioiodine capture. Journal of Environmental Radioactivity, 2014, 133: 35-39.
DOI PMID |
[27] |
NAN Y, TAVLARIDES L L, DEPAOLI D W. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: experiments and modeling. AIChE Journal, 2017, 63(3): 1024-1035.
DOI URL |
[28] |
WU L, SAWADA J A, KUZNICKI D B, et al. Iodine adsorption on silver-exchanged titania-derived adsorbents. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302(1): 527-532.
DOI URL |
[29] |
KATSOULIDIS A P, HE J, KANATZIDIS M G. Functional monolithic polymeric organic framework aerogel as reducing and hosting media for Ag nanoparticles and application in capturing of iodine vapors. Chemistry of Materials, 2012, 24(10): 1937-1943.
DOI URL |
[30] | CHONG S, RILEY B J, PETERSON J A, et al. Gaseous iodine sorbents: a comparison between Ag-loaded aerogel and xerogel scaffolds. ACS Applied Materials & Interfaces, 2020, 12(23): 26127-26136. |
[31] |
ZOU H, YI F, SONG M, et al. Novel synthesis of Bi-Bi2O3-TiO2-C composite for capturing iodine-129 in off-gas. Journal of Hazardous Materials, 2019, 365: 81-87.
DOI URL |
[32] |
LI G, HUANG Y, LIN J, et al. Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers. Chemical Engineering Journal, 2020, 382: 122833.
DOI URL |
[1] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[2] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[3] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[4] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[5] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[6] | YANG Huiping, ZHOU Xuefan, FANG Haojie, ZHANG Xiaoyun, LUO Hang, ZHANG Dou. Field-induced Strain Property of Lead-free Ferroelectric Ceramics Based on Sodium Bismuth Titanate [J]. Journal of Inorganic Materials, 2022, 37(6): 603-610. |
[7] | CAI Jia, HUANG Gaoxu, JIN Xiaopan, WEI Chi, MAO Jiayi, LI Yongsheng. In-situ Modification of Carbon Nanotubes with Metallic Bismuth Nanoparticles for Uniform Lithium Deposition [J]. Journal of Inorganic Materials, 2022, 37(12): 1337-1343. |
[8] | ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, LIU Haiyan, WANG Yingde. Infrared Radiation Shielded SiZrOC Nanofiber Membranes: Preparation and High-temperature Thermal Insulation Performance [J]. Journal of Inorganic Materials, 2022, 37(1): 93-100. |
[9] | MA Lingling, CHANG Jiang. Nd-doped Calcium Silicate: Photothermal Effect, Fluorescence Performance, and Biological Properties of Its Composite Electrospun Membrane [J]. Journal of Inorganic Materials, 2021, 36(9): 974-980. |
[10] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[11] | YU Xiangkun, LIU Kun, LI Zhipeng, ZHAO Yulu, SHEN Jinyou, MAO Ping, SUN Aiwu, JIANG Jinlong. Efficient Adsorption of Radioactive Iodide by Copper/Palygorskite Composite [J]. Journal of Inorganic Materials, 2021, 36(8): 856-864. |
[12] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[13] | SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation [J]. Journal of Inorganic Materials, 2021, 36(6): 561-569. |
[14] | LI Tingting, ZHANG Zhiming, HAN Zhengbo. Research Progress in Polymer-based Metal-organic Framework Nanofibrous Membranes Based on Electrospinning [J]. Journal of Inorganic Materials, 2021, 36(6): 592-600. |
[15] | XI Wen, LI Haibo. Preparation of TiO2/Ti3C2Tx Composite for Hybrid Capacitive Deionization [J]. Journal of Inorganic Materials, 2021, 36(3): 283-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||