Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (8): 837-844.DOI: 10.15541/jim20160628
• Orginal Article • Previous Articles Next Articles
XIN Chen1, QI Xin2, ZHU Min1, ZHAO Shi-Chang2, ZHU Yu-Fang1
Received:
2016-11-15
Revised:
2016-12-21
Published:
2017-08-15
Online:
2017-07-19
About author:
XIN Chen. E-mail: xinchen517@163.com
Supported by:
CLC Number:
XIN Chen, QI Xin, ZHU Min, ZHAO Shi-Chang, ZHU Yu-Fang. Hydroxyapatite Whisker-reinforced Composite Scaffolds Through 3D Printing for Bone Repair[J]. Journal of Inorganic Materials, 2017, 32(8): 837-844.
Samples | HAPw /g | HAPnp /g | PCL /g | CHCl3 /mL | DMSO /mL |
---|---|---|---|---|---|
HAPnp-2PCL | 0 | 0.5 | 1 | 3.8 | 0.2 |
HAPw-2PCL | 0.5 | 0 | 1 | 3.8 | 0.2 |
HAPw-5PCL | 0.2 | 0 | 1 | 3.8 | 0.2 |
HAPw-10PCL | 0.1 | 0 | 1 | 3.8 | 0.2 |
PCL | 0 | 0 | 1 | 3.8 | 0.2 |
Table1 Composite scaffold number and composition of printing paste
Samples | HAPw /g | HAPnp /g | PCL /g | CHCl3 /mL | DMSO /mL |
---|---|---|---|---|---|
HAPnp-2PCL | 0 | 0.5 | 1 | 3.8 | 0.2 |
HAPw-2PCL | 0.5 | 0 | 1 | 3.8 | 0.2 |
HAPw-5PCL | 0.2 | 0 | 1 | 3.8 | 0.2 |
HAPw-10PCL | 0.1 | 0 | 1 | 3.8 | 0.2 |
PCL | 0 | 0 | 1 | 3.8 | 0.2 |
Fig. 6 (A) Water contact angle of PCL scaffolds (first panel), HAPw-10PCL scaffolds (second panel), HAPw-5PCL scaffolds (third panel), HAPw-2PCL scaffolds (fourth panel), and HAPnp-2PCL. Ascending contact angles measured at varying times (0, 10, and 20 min), and (B) quantification of the contact angle with time
Fig. 9 Osteogenic expression of ALP (A), OCN (B), RUNX2 (C) for hBMSCs cultured on the PCL and HAPw-PCL scaffolds by qRT-PCR analysis after 7 d and 14 d (*p < 0.05 if compared with the PCL scaffold control)
[1] | CRANE G M, LSHAUG S L, MIKOS A G, et al.Bone Tissue Engineering.Nature Medicine, 1995, 1(12): 1322-1324. |
[2] | NAIR L S, LAURENCIN C T.Biodegradable polymers as biomaterials.Progress in Polymer Science, 2007, 32(8): 762-798. |
[3] | YUN H S, KIM S E, PARK E K.Bioactive glass-poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks.Materials Science and Engineering C, 2011, 31(2): 198-205. |
[4] | ZHU N, LI M G, COOPER D, et al.Development of novel hybrid poly (L-lactide)/chitosan scaffolds using the rapid freeze prototyping technique.Biofabrication, 2011, 3(3): 390-395. |
[5] | ZHANG J H, ZHAO S C, ZHU Y F, et al.Three dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.Acta Biomaterialia, 2014, 10(5): 2269-2281. |
[6] | DOROZHKIN S V.Bioceramics of calcium orthophosphates.Biomaterials, 2010, 31(7): 1465-1485. |
[7] | SANTOS C, LUKLINSKA Z B, CLARKE R L, et al.Hydroxyapatite as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites.Journal of Materials Science: Materials in Medicine, 2001, 12(7): 565-573. |
[8] | ZHANG H, DARVELL B W.Mechanical properties of hydroxyapatite whisker-reinforced bis-GMA-based resin composites.Dental Materials Official Publication of the Academy of Dental Materials, 2012, 28(8): 824-830. |
[9] | GAO W M, RUAN C X, CHEN Y F.Effects of hydroxyapatite morphology on the mechanical strength of hydroxyapatite- polyanhydride composites. Journal of Materials Science & Engineering, 2006, 24(5): 636-646. |
[10] | KANE R J, CONVERSE G L, ROEDER R K.Effects of the reinforcement morphology on the fatigue properties of hydroxyapatite reinforced polymers.Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 261-268. |
[11] | ZHANG H Q, DARVELL B W.Failure and behavior in water of hydroxyapatite whisker-reinforced bis-GMA-based resin composites.Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10(6): 39-47. |
[12] | CONVERSE G L, YUE W, ROEDER R K.Processing and tensile properties of hydroxyapatite whisker reinforced polyetheretherketone.Biomaterials, 2007, 28(6): 927-935. |
[13] | HU H, XU G, ZAN Q, et al.In situ formation of nano hydroxyapatite whisker reinforced porous β-TCP scaffolds.Microelectronic Engineering, 2012, 98: 566-569. |
[14] | JANSEN E J, SLADEK R E, BAHAR H, et al.Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.Biomaterials, 2005, 26(21): 4423-4431. |
[15] | WHANG K, GOLDSTICK T K, HEALY K E.A biodegradable polymer scaffold for delivery of osteotropic factors.Biomaterials, 2000, 21(24): 2545-2551. |
[16] | WU C, ZHOU Y, XU M, et al.Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity.Biomaterials, 2013, 34(2): 422-433. |
[17] | PARK S A, LEE S H, KIM W D.Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.Bioprocess and Biosystems Engineering, 2011, 34(4): 505-513. |
[18] | SHI G Q.Individualized artificial knee joint design and manufacturing based on CAD software.Journal of University of Shanghai for Science and Technology, 2013, 35(1): 82-86. |
[19] | CIOCCA L, DE CF, FANTINI M, et al.CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study.Computerized Medical Imaging & Graphics, 2009, 33(1): 58-62. |
[20] | MATSUBARA T, SUARDITA K, ISHII M, et al.Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells.Journal of Bone and Mineral Research, 2005, 20(3): 399-409. |
[21] | ASSA S, LARON Z.Preparation and characterization of dense nanohydroxyapatite/PLLA composites.Materials Science and Engineering C, 2009, 29(1): 172-177. |
[22] | HAYATI A N, HOSSEINALIPOUR S M, REZAIE H R, et al.Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering applications.Materials Science & Engineering C, 2012, 32(3): 416-422. |
[23] | ZHANG R Y, MA P X.Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.Journal of Biomedical Materials Research Part A, 1999, 44(4): 446-455. |
[24] | FLEISCHER S, SHAPIRA A, REGEV O, et al.Albumin Fiber Scaffolds for Engineering Functional Cardiac Tissues.Biotechnology and Bioengineering, 2014, 11(6): 1246-1257. |
[25] | HUTMACHER D W.Scaffolds in tissue engineering bone and cartilage.Biomaterials, 2001, 21(24): 2529-2543. |
[26] | BOMBONATO-PRADO K, BELLESINI L C, MARQUES M, et al.Microarray-based gene expression analysis of human osteoblasts in response to different biomaterials.Journal of Biomedical Materials Research Part A, 2009, 88(2): 401-408. |
[27] | SOHN S H, JUN H K, KIM C S, et al.Biological responses in osteoblast-like cell line according to thin layer hydroxyapatite coatings on anodized titanium.Journal of Oral Rehabilitation, 2006, 33(12): 898-911. |
[28] | HUANG Y C, HSIAO P C, CHAI H J.Hydroxyapatite extracted from fish scale: effects on MG63 osteo6last-like cells.Ceramics International, 2011, 37(6): 1825-1831. |
[29] | LIU Y K, WANG G C, CAI Y R, et al.In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells.Journal of Biomedical Materials Research Part A. 2009, 90(4): 1083-1091. |
[30] | BABISTER J C, HAILS L A, OREFFO R O, et al.The effect of pre-coating human bone marrow stromal cells with hydroxyapatite/ amino acid nanoconjugates on osteogenesis.Biomaterials, 2009, 30(18): 3174-3182. |
[31] | LUO E, LIU X, WEI S C, et al.Osteoblast adhesion to clodronate- hydroxyapatite composite.Applied Surface Science, 2008, 255(2): 308-311. |
[32] | DIMITRIEVSKA S, BUREAU MN, ANTONIOU J, et al.Titanic- hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation.Journal of Biomedical Materials Research Part A, 2011, 98(4): 576-588. |
[33] | ZHAO H, DONG W, ZHENG Y, et al.The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds.Biomaterials, 2011, 32(25): 5837-5846. |
[34] | HU Q H, TAN Z, LIU Y K, et al.Effect of crystallinity of calcium phosphate nanoparticles on adhesion proliferation, and differentiation of bone marrow mesenchymal stem cells.Journal of Materials Chemistry, 2007, 17(44): 4690-4698. |
[35] | LI Y, MA T, YANG S T, et al.Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds.Biomaterials, 2001, 22(6): 609-618. |
[36] | MURPHY C M, HAUGH M G, O’BRIEN F J. The effect of mean pore size on cell attachment, proliferation and migration in collagen glycosaminoglycan scaffolds for bone tissue engineering.Biomaterials, 2010, 31(3): 461-466. |
[37] | HU H T, XU G H, ZAN Q F.In situ formation of nano-hydroxyapatite whisker reinfoced porous b-TCP scaffolds.Microelectronic Engineering, 2012, 98: 566-569. |
[1] | SHI Zhe, LIU Weiye, ZHAI Dong, XIE Jianjun, ZHU Yufang. Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties [J]. Journal of Inorganic Materials, 2023, 38(7): 763-770. |
[2] | ZHAO Rui, MAO Fei, QIAN Hui, YANG Xiao, ZHU Xiangdong, ZHANG Xingdong. Micro-/Nano-structured Biomaterials for Bone Regeneration: New Progress [J]. Journal of Inorganic Materials, 2023, 38(7): 750-762. |
[3] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[4] | WANG Lukai, FENG Junzong, JIANG Yonggang, LI Liangjun, FENG Jian. Direct-ink-writing 3D Printing of Ceramic-based Porous Structures: a Review [J]. Journal of Inorganic Materials, 2023, 38(10): 1133-1148. |
[5] | SHI Jixiang, ZHAI Dong, ZHU Min, ZHU Yufang. Preparation and Characterization of Bioactive Glass-Manganese Dioxide Composite Scaffolds [J]. Journal of Inorganic Materials, 2022, 37(4): 427-435. |
[6] | LI Qiaolei, GU Yue, YU Xuehua, ZHANG Chaowei, ZOU Mingke, LIANG Jingjing, LI Jinguo. Effect of Sintering Temperature on Surface Morphology and Roughness of 3D-printed Silicon Ceramic Cores [J]. Journal of Inorganic Materials, 2022, 37(3): 325-332. |
[7] | ZHU Junyi, ZHANG Cheng, LUO Zhongqiang, CAO Jiwei, LIU Zhiyuan, WANG Pei, LIU Changyong, CHEN Zhangwei. Influence of Debinding Process on the Properties of Photopolymerization 3D Printed Cordierite Ceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 317-324. |
[8] | LI Qi, HUANG Yi, QIAN Bin, XU Beibei, CHEN Liying, XIAO Wenge, QIU Jianrong. Photo Curing and Pressureless Sintering of Orange-emitting Glass-ceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 289-296. |
[9] | YANG Yong, GUO Xiaotian, TANG Jie, CHANG Haotian, HUANG Zhengren, HU Xiulan. Research Progress and Prospects of Non-oxide Ceramic in Stereolithography Additive Manufacturing [J]. Journal of Inorganic Materials, 2022, 37(3): 267-277. |
[10] | WU Zhongcao, HUAN Zhiguang, ZHU Yufang, WU Chengtie. 3D Printing and Characterization of Microsphere Hydroxyapatite Scaffolds [J]. Journal of Inorganic Materials, 2021, 36(6): 601-607. |
[11] | ZHANG Li, YANG Xianfeng, XU Xiewen, GUO Jinyu, ZHOU Zhe, LIU Peng, XIE Zhipeng. 3D Printed Zirconia Ceramics via Fused Deposit Modeling and Its Mechanical Properties [J]. Journal of Inorganic Materials, 2021, 36(4): 436-442. |
[12] | Zhi-Qiang SUN, Xiao-Bo YANG, Hua-Dong WANG, De-Li LI, Shu-Qin LI, Yi LÜ. Ceramic/Resin Composite Powders with Uniform Resin Layer Synthesized from SiO2 Spheres for 3D Technology [J]. Journal of Inorganic Materials, 2019, 34(5): 567-572. |
[13] | Sheng-Yang FU, Bin YU, Hui-Feng DING, Guo-Dong SHI, Yu-Fang ZHU. Zirconia Incorporation in 3D Printed β-Ca2SiO4 Scaffolds on Their Physicochemical and Biological Property [J]. Journal of Inorganic Materials, 2019, 34(4): 444-454. |
[14] | LUO Pin-Feng, ZHI Wei, ZHANG Jing-Wei, SHI Feng, DUAN Ke, WANG Jian-xin, LU Xiong, WENG Jie. Interconnectivity of Bioceramic Scaffolds with Different Porous Structures and Their Fluid Velocity Distribution Analyzed by Micro-CT Computer Modeling [J]. Journal of Inorganic Materials, 2015, 30(1): 71-76. |
[15] | ZHAO Jing, LI Jin-Yu, ZHI Wei, LU Xiong, JIA Zhi-Bin, WENG Jie. Preparation and Optimization of Porous HA Ceramic Scaffolds by Wax Spheres Leaching Method [J]. Journal of Inorganic Materials, 2013, 28(1): 74-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||