Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (7): 673-680.DOI: 10.15541/jim20160483
• Orginal Article • Next Articles
DONG Liang1,2, WANG Yan-Hui2, ZANG Jian-Bing2
Received:
2016-08-29
Revised:
2016-11-10
Published:
2017-07-20
Online:
2017-06-23
About author:
DONG Liang. E-mail: dongliang@neuq.edu.cn
Supported by:
CLC Number:
DONG Liang, WANG Yan-Hui, ZANG Jian-Bing. Recent Progress in Diamond-based Electrocatalysts for Fuel Cells[J]. Journal of Inorganic Materials, 2017, 32(7): 673-680.
Fig. 3 (a) Changes of Pt/C, Pt/ND@G-1300 and Pt/ND@G-1600 ESA related (vs. initial) with cycle number, (b) half-wave potentials of Pt/GND1300, Pt/GND1600 and Pt/C before and after ADT[51]
[1] | 黄镇江, 刘凤君. 燃料电池及其应用. 北京: 电子工业出版社, 2005: 5-14. |
[2] | SHARAF O Z, ORHAN M F.An overview of fuel cell technology: fundamentals and applications.Renew. Sust. Energ. Rev., 2014, 32: 810-853. |
[3] | O'HAYRE R, CHA S W, PRINZ F B, et al. Fuel Cell Fundamentals. The second edition. New York: John Wiley & Sons, 2016: 3-23. |
[4] | ARICO A, SRINIVASAN S, ANTONUCCI V.DMFCs: From fundamental aspects to technology development.Fuel cells, 2001, 1(2): 133-161. |
[5] | MCNICOL B, RAND D, WILLIAMS K.Direct methanol-air fuel cells for road transportation.J. Power Sources, 1999, 83(1): 15-31. |
[6] | YU X, YE S.Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC.J. Power Sources, 2007, 172(1): 133-144. |
[7] | KANGASNIEMI K H, CONDIT D, JARVI T.Characterization of vulcan electrochemically oxidized under simulated pem fuel cell conditions.J. Electrochem. Soc., 2004, 151(4): E125-E132. |
[8] | REISER C A, BREGOLI L, PATTERSON T W, et al.A reverse- current decay mechanism for fuel cells.Electrochem. Solid-State Lett., 2005, 8(6): A273-A276. |
[9] | LIU M, CHEN W.Green synthesis of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction.Nanoscale, 2013, 5(24): 12558-12564. |
[10] | SHAO Y, YIN G, GAO Y, et al.Durability study of Pt∕C and Pt∕CNTs catalysts under simulated pem fuel cell conditions.J. Electrochem. Soc., 2006, 153(6): A1093-A1097. |
[11] | LIU M, LU Y, CHEN W.PdAg nanorings supported on graphene nanosheets: highly methanol‐tolerant cathode electrocatalyst for alkaline fuel cells.Adv. Funct. Mater., 2013, 23(10): 1289-1296. |
[12] | LIU M, ZHANG R, CHEN W.Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications.Chem. Rev., 2014, 114(10): 5117-5160. |
[13] | LU Y, JIANG Y, WU H, et al.Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after Co stripping-cleaning.J. Phys. Chem. C, 2013, 117(6): 2926-2938. |
[14] | LU Y, JIANG Y, CHEN W.Graphene nanosheet-tailored ptpd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation.Nanoscale, 2014, 6(6): 3309-3315. |
[15] | ZHANG R, CHEN W.Non-Precious Ir-V bimetallic nanoclusters assembled on reduced graphene nanosheets as catalysts for the oxygen reduction reaction.J. Mater. Chem. A, 2013, 1(37): 11457-11464. |
[16] | ZHANG R, HE S, LU Y, et al.Fe, Co, N-functionalized carbon nanotubes in situ grown on 3d porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction.J. Mater. Chem. A, 2015, 3(7): 3559-3567. |
[17] | LIU M, HE S, CHEN W.Free-standing 3D hierarchical carbon foam-supported PtCo nanowires with “Pt Skin” as advanced electrocatalysts.Electrochim. Acta, 2016, 199: 218-226. |
[18] | 方啸虎. 超硬材料科学与技术. 北京: 中国建材工业出版社, 1998: 17-21. |
[19] | AVGOUROPOULOS G, IOANNIDES T.CO Tolerance of Pt and Rh catalysts: effect of co in the gas-phase oxidation of H2 over Pt and Rh supported catalysts.Appl. Catal. B- Environ., 2005, 56(1): 77-86. |
[20] | GARC A G, SILVA-CHONG J, GUILL N-VILLAFUERTE O, et al. CO tolerant catalysts for PEM fuel cells: spectroelectrochemical studies.Catal. Today, 2006, 116(3): 415-421. |
[21] | FERREIRA P, SHAO-HORN Y, MORGAN D, et al.Instability of Pt∕C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation.J. Electrochem. Soc., 2005, 152(11): A2256-A2271. |
[22] | KOH S, YU C, MANI P, et al.Activity of ordered and disordered pt-co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases.J. Power Sources, 2007, 172(1): 50-56. |
[23] | BAR-ON I, KIRCHAIN R, ROTH R.Technical cost analysis for pem fuel cells.J. Power Sources, 2002, 109(1): 71-75. |
[24] | GONG K, DU F, XIA Z, et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.Science, 2009, 323(5915): 760-764. |
[25] | QU L, LIU Y, BAEK J B, et al.Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.ACS Nano, 2010, 4(3): 1321-1326. |
[26] | KRAMM U I, LEF VRE M, LAROUCHE N, et al.Correlations between mass activity and physicochemical properties of fe/n/c catalysts for the ORR in PEM fuel cell via 57Fe mößbauer spectroscopy and other techniques.J. Am. Chem. Soc., 2013, 136(3): 978-985. |
[27] | SWAIN G M.The Susceptibility to surface corrosion in acidic fluoride media: a comparison of diamond, hopg, and glassy carbon electrodes.J. Electrochem. Soc., 1994, 141(12): 3382-3393. |
[28] | GAO F, YANG N, SMIRNOV W, et al.Size-controllable and homogeneous platinum nanoparticles on diamond using wet chemically assisted electrodeposition.Electrochim. Acta, 2013, 90: 445-451. |
[29] | LU X, HU J, FOORD J S, et al.Electrochemical deposition of Pt-Ru on diamond electrodes for the electrooxidation of methanol.J. Electroanal. Chem., 2011, 654(1): 38-43. |
[30] | MAVROKEFALOS C K, NELSON G W, POLL C G, et al.Electrochemical aspects of Pt-Cu and Cu modified boron-doped diamond.Phys. Status Solidi A, 2015, 212(11): 2559-2567. |
[31] | SIN G, FOTI G, COMNINELLIS C.Boron-doped diamond (bdd)-supported pt/sn nanoparticles synthesized in microemulsion systems as electrocatalysts of ethanol oxidation.J. Electroanal. Chem., 2006, 595(2): 115-124. |
[32] | SALAZAR-BANDA G R, SUFFREDINI H B, AVACA L A, et al. methanol and ethanol electro-oxidation on Pt-SnO2 and Pt-Ta2O5 Sol-Gel-modified boron-doped diamond surfaces.Mater. Chem. Phys., 2009, 117(2): 434-442. |
[33] | WANG J, SWAIN G, TACHIBANA T, et al.The incorporation of Pt nanoparticles into boron-doped diamond thin-films: dimensionally stable catalytic electrodes.J. New Mat. Electr. Sys, 2000, 3(1): 75-82. |
[34] | LYU X, HU J, FOORD J S, et al.A novel electroless method to prepare a platinum electrocatalyst on diamond for fuel cell applications.J. Power Sources, 2013, 242: 631-637. |
[35] | GONZALEZ-GONZALEZ I, TRYK D, CABRERA C R.Polycrystalline boron-doped diamond films as supports for methanol oxidation electrocatalysts.Diam. Relat. Mater., 2006, 15(2): 275-278. |
[36] | EL ROUSTOM B, SINE G, FOTI G, et al.A novel method for the preparation of bi-metallic (Pt-Au) nanoparticles on boron doped diamond (BDD) substrate: application to the oxygen reduction reaction.J. Appl. Electrochem., 2007, 37(11): 1227-1236. |
[37] | SPĂTARU T, PREDA L, OSICEANU P, et al. Electrochemical deposition of Pt-RuOxNh2O composites on conductive diamond and its application to methanol oxidation in acidic media.Electrocatalysis, 2016, 7(2): 140-148. |
[38] | SALAZAR-BANDA G R, EGUILUZ K I, AVACA L A. Boron-doped diamond powder as catalyst support for fuel cell applications.Electrochem. Commun., 2007, 9(1): 59-64. |
[39] | SPĂTARU N, ZHANG X, SPĂTARU T, et al. Platinum electrodeposition on conductive diamond powder and its application to methanol oxidation in acidic media.J. Electrochem. Soc., 2008, 155(3): B264-B269. |
[40] | LA-TORRE-RIVEROS L, ABEL-TATIS E, M NDEZ-TORRES A E, et al. Synthesis of platinum and platinum-ruthenium-modified diamond nanoparticles.J. Nanopart. Res., 2011, 13(7): 2997-3009. |
[41] | KIM J, CHUN Y S, LEE S K, et al.Improved electrode durability using a boron-doped diamond catalyst support for proton exchange membrane fuel cells.RSC Advances, 2015, 5(2): 1103-1108. |
[42] | CELORRIO V, PLANA D, FL REZ-MONTA O J, et al. Methanol oxidation at diamond-supported Pt nanoparticles: effect of the diamond surface termination.J. Phys. Chem. C, 2013, 117(42): 21735-21742. |
[43] | WANG J, SWAIN G M.Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis preliminary studies of the oxygen-reduction reaction.J. Electrochem. Soc., 2003, 150(1): E24-E32. |
[44] | ZANG J, WANG Y, ZHAO S, et al.Electrochemical properties of nanodiamond powder electrodes.Diam. Relat. Mater., 2007, 16(1): 16-20. |
[45] | BIAN L, WANG Y, ZANG J, et al.Microwave synthesis and characterization of pt nanoparticles supported on undoped nanodiamond for methanol electrooxidation.Int. J. Hydrogen. Energ, 2012, 37(2): 1220-1225. |
[46] | LU R, ZANG J, WANG Y, et al.Microwave synthesis and properties of nanodiamond supported ptru electrocatalyst for methanol oxidation.Electrochim. Acta, 2012, 60: 329-333. |
[47] | ZANG J, WANG Y, BIAN L, et al.Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electro-oxidation.Carbon, 2012, 50(8): 3032-3038. |
[48] | ZHAO Y, WANG Y, CHENG X, et al.Platinum nanoparticles supported on epitaxial TiC/nanodiamond as an electrocatalyst with enhanced durability for fuel cells.Carbon, 2014, 67: 409-416. |
[49] | ZHAO Y, WANG Y, DONG L, et al.Core-shell structural nanodiamond@tin supported pt nanoparticles as a highly efficient and stable electrocatalyst for direct methanol fuel cells.Electrochim. Acta, 2014, 148: 8-14. |
[50] | ZHAO Y, WANG Y, ZANG J, et al.A novel support of nano titania modified graphitized nanodiamond for Pt electrocatalyst in direct methanol fuel cell.Int. J. Hydrogen. Energy, 2015, 40(13): 4540-4547. |
[51] | DONG L, ZANG J, WANG Y, et al.Graphitized nanodiamond as highly efficient support of electrocatalysts for oxygen reduction reaction.J. Electrochem. Soc., 2014, 161(3): F185-F191. |
[52] | LIU Y, CHEN S, QUAN X, et al.Tuning the electrochemical properties of a boron and nitrogen codoped nanodiamond rod array to achieve high performance for both electro-oxidation and electro-reduction.J. Mater. Chem. A, 2013, 1(46): 14706-14712. |
[53] | GAN P, FOORD J S, COMPTON R G.Surface modification of boron-doped diamond with microcrystalline copper phthalocyanine: oxygen reduction catalysis.Chemistry Open, 2015, 4(5): 606-612. |
[54] | KOH J, PARK S H, CHUNG M W, et al.Diamond@carbon-onion hybrid nanostructure as a highly promising electrocatalyst for the oxygen reduction reaction.RSC Advances, 2016, 6(33): 27528-27534. |
[55] | DONG L, ZANG J, SU J, et al.Nanodiamond/ nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction.Electrochim. Acta, 2015, 174: 1017-1022. |
[56] | LIU X, WANG Y, DONG L, et al.One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/ nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media.Electrochim. Acta, 2016, 194: 161-167. |
[57] | WU Y, ZANG J, DONG L, et al.High performance and bifunctional cobalt-embedded nitrogen doped carbon/nanodiamond electrocatalysts for oxygen reduction and oxygen evolution reactions in alkaline media.J. Power Sources, 2016, 305: 64-71. |
[58] | ZHU Y, LIN Y, ZHANG B, et al.Nitrogen-doped annealed nanodiamonds with varied Sp2/Sp3 ratio as metal‐free electrocatalyst for the oxygen reduction reaction.ChemCatChem, 2015, 7(18): 2840-2845. |
[59] | JANG D M, IM H S, BACK S H, et al.Laser-induced graphitization of colloidal nanodiamonds for excellent oxygen reduction reaction.Phys. Chem. Chem. Phys., 2014, 16(6): 2411-2416. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[3] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[9] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[10] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[11] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[12] | XIN Zhenyu, GUO Ruihua, WUREN Tuoya, WANG Yan, AN Shengli, ZHANG Guofang, GUAN Lili. Pt-Fe/GO Nanocatalysts: Preparation and Electrocatalytic Performance on Ethanol Oxidation [J]. Journal of Inorganic Materials, 2025, 40(4): 379-387. |
[13] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[14] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[15] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||