Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (8): 881-889.DOI: 10.15541/jim20160015
• Orginal Article • Previous Articles Next Articles
WANG Dan-Jun1, SHEN Hui-Dong1, GUO Li1, 2, HE Xiao-Mei1, ZHANG Jie1, FU Feng1
Received:
2016-01-06
Published:
2016-08-20
Online:
2016-07-20
Supported by:
CLC Number:
WANG Dan-Jun, SHEN Hui-Dong, GUO Li, HE Xiao-Mei, ZHANG Jie, FU Feng. Synthesis of Diatomite/g-C3N4 Composite with Enhanced Visible-light-responsive Photocatalytic Activity[J]. Journal of Inorganic Materials, 2016, 31(8): 881-889.
Fig. 1 XRD patterns of samples(a) XRD patterns of diatomite, g-C3N4 and diatomite/g-C3N4 composite; (b) Enlarged XRD pattern of diatomite g-C3N4 and diatomite/g-C3N4 composites from 25° to 30° The peaks marked by (●) in (a) are the characteristic of the Quartz impurity in the diatomite sample
Samples | Diatomite theoretical content /wt% | Diatomite experimental/wt% |
---|---|---|
Diatomite/g-C3N4 (1.22wt%) | 1.79 | 1.22 |
Diatomite/g-C3N4 (2.32wt%) | 3.56 | 2.32 |
Diatomite/g-C3N4 (5.46wt%) | 6.78 | 5.46 |
Diatomite/g-C3N4 (13.88wt%) | 15.38 | 13.88 |
Diatomite/g-C3N4 (25.21wt%) | 26.67 | 25.21 |
Table 1 Content in diatomite/g-C3N4 by TG curves analysis
Samples | Diatomite theoretical content /wt% | Diatomite experimental/wt% |
---|---|---|
Diatomite/g-C3N4 (1.22wt%) | 1.79 | 1.22 |
Diatomite/g-C3N4 (2.32wt%) | 3.56 | 2.32 |
Diatomite/g-C3N4 (5.46wt%) | 6.78 | 5.46 |
Diatomite/g-C3N4 (13.88wt%) | 15.38 | 13.88 |
Diatomite/g-C3N4 (25.21wt%) | 26.67 | 25.21 |
Fig. 4 FE-SEM and TEM images of samples(a) FE-SEM image of diatomite; (b) FE-SEM image of alkali washed diatomite; (c) FE-SEM image of diatomite/g-C3N4 composite; (d) TEM of diatomite/g-C3N4 composite; (e) SEAD pattern of g-C3N4; (f) Conjunction edge between flake-like g-C3N4 and diatomite particles
Fig. 7 Photocatalytic activity of the samples(A) Photocatalytic degradation efficiency of RhB by g-C3N4 and diatomite/g-C3N4 composites; (B) Comparison of mixted, treated and untreated diatomite/g-C3N4(2.32wt%); (C) Kinetic fit for the degradation of RhB with g-C3N4 and diatomite/g-C3N4 composites (a, blank; b, g-C3N4; c, diatomite/g-C3N4 (1.22wt%); d, diatomite/g-C3N4 (2.32wt%); e, diatomite/g-C3N4 (5.46wt%); f, diatomite/g-C3N4 (13.88wt%); g, diatomite/g-C3N4 (25.21wt%); h, diatomite/g- C3N4 mixture (2.32wt%); i, diatomite); (D) Adsorption percentage and rate constants; (E) Absorption spectral changes of RhB under visible light irradiation using diatomite/g-C3N4 (2.32wt%) as photocatalyst; (F) XRD patterns of diatomite/g-C3N4 before and after being used
[1] | KONSTANINOU I K, ALBANIS T A.TiO2-assistd photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations.Appl. Catal. B, 2004, 49(1): 1-14. |
[2] | ARSLAN A I, TURELII G, OLMEZ H T.Treatment of zao dye production wastewaters using Photo-fenton-like advanced oxidation process: optimization by response surface methodology.J. Photochem. Photobiol. A, 2009, 202(2/3): 142-153. |
[3] | WALTER M G, WARREN E L, MCKONE J R, et al.Solar water splitting cells.Chem. Rev., 2010, 110(11): 6446-6473. |
[4] | WANG X C, MAEDA K, THOMAS A, et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light.Nat. Mater., 2009, 8(1): 76-80. |
[5] | YAN S C, LI Z S, ZOU Z G.Photodegradation performance of g-C3N4 fabricated by directly heating melamine.Langmuir, 2009, 25(17): 10397-10401. |
[6] | ZHANG X D, XIE X, WANG H, et al.Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging.J. Am. Chem. Soc., 2013, 135(1): 18-21. |
[7] | ZHANG Y, MORI T, YE J, et al.Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation.J. Am. Chem. Soc., 2010, 132(18): 6294-6295. |
[8] | MA X G, LV Y H, XU J, et al.A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first- principles study.J. Phys. Chem. C, 2012, 116(44): 23485-23493. |
[9] | YAN S C, LI Z S, ZOU Z G.Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation.Langmuir, 2010, 26(6): 3894-3901. |
[10] | WANG Y, ZHANG J, WANG X, et al.Boron-and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation.Angew. Chem. Int. Ed., 2010, 49(19): 3356-3359. |
[11] | CHEN X F, ZHANG J S, FU X Z, et al.Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light.J. Am. Chem. Soc., 2009, 131(33): 11658-11659. |
[12] | GE L, ZUO F, LIU J K, et al.Synthesis and efficient visible light photocatalytic hydrogen rvolution of polymeric g-C3N4 coupled with CdS quantum dots.J. Phys. Chem. C, 2012, 116(25): 13708-13714. |
[13] | LI T T, ZHAO L H, HE Y M, et al.Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation.Appl. Catal. B, 2013, 129: 255-263. |
[14] | WANG X J, YANG W Y, LI F T, et al.In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties.Ind. Eng. Chem. Res., 2013, 52(48): 17140-17150. |
[15] | KATSUMATA H, SAKAI T, SUZUKI T, et al.Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light.Ind. Eng. Chem. Res., 2014, 53(19): 8013-8025. |
[16] | HE Y M, CAI J, LI T T, et al.Synthesis, characterization, and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation.Ind. Eng. Chem. Res., 2012, 51(45): 14729-14737. |
[17] | DONG F, NI Z L, LI P D, et al.A general method for type I and type II g-C3N4/g-C3N4 metal-free isotype heterostructures with enhanced visible light photocatalysis.New J. Chem., 2015, 39(6): 4737-4744. |
[18] | GE L, HAN C, LIU J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A, 2011, 409-410: 215-222. |
[19] | JUNG K W, JANG D, AHN K H.A novel approach for improvement of purity and porosity in diatomite (diatomaceous earth) by applying an electric field.Int. J. Miner. Process, 2014, 131: 7-11. |
[20] | WANG B, ZHANG G X, LENG X.Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.J. Hazard. Mater., 2015, 285: 212-220. |
[21] | SUN Z M, YANG X P, ZHANG G X, et al.A novel method for purification of low grade diatomite powders in centrifugal fields.Int. J. Miner. Process, 2013, 125: 18-26. |
[22] | LOSIC D, MITCHELL J G, VOELCKER N H.Diatomaceous lessons in nanotechnology and advanced materials.Adv. Mater., 2009, 21(29): 2947-2958. |
[23] | SPRYNSKYY M, KOVALCHUK I, BUSZEWSKI B.The separation of uranium ions by natural and modified diatomite from aqueous solution.J. Hazard. Mater., 2010, 181(1/2/3): 700-707. |
[24] | YU W B, YUAN P, LIU D, et al.Facile preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance of benzene adsorption: The effects of NaOH etching pretreatment.J. Hazard. Mater., 2015, 285: 173-181. |
[25] | DU Y C, FAN H G, WANG L P, et al.α-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic.J. Mater. Chem. A, 2013, 1(26): 7729-7737. |
[26] | PADMANABHAN S K, PAL S, HAQ E U, et al.Nanocrystalline TiO2-diatomite composite catalysts: effect of crystallization on the photocatalytic degradation of rhodamine B.Appl. Catal. A: Gen., 2014, 485: 157-162. |
[27] | XIA Y, LI F F, JIANG Y S, et al.Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite.Appl. Surf. Sci., 2014, 303: 290-296. |
[28] | KARAMAN S, KARAIPEKLI A, ALPER B A.Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage.Solar Energy Mater. Solar Cells, 2011, 95: 1647-1653. |
[29] | LIANG X H, FU X Y.Effect of the Ce-TiO2/diatomite on the photo-catalysis degradation of MB.Mater. Sci. Forum., 2014, 789: 44-47. |
[30] | JEONG S G, JEON J, LEE J H, et al.Optimal preparation of PCM/diatomite composites for enhancing thermal properties.Int. J. Heat Mass Trans., 2013, 62: 711-717. |
[31] | GUO S F, SHI L.Synthesis of succinic anhydride from maleic anhydride on Ni/diatomite catalysts.Catal. Today, 2013, 212: 137-141. |
[32] | HOU Y, LAURSEN A B, ZHANG J, et al.Layered nanojunctions for hydrogen-evolution catalysis.Angew. Chem. Int. Ed., 2013, 52(13): 3621-3625. |
[33] | WANG J L, YU Y, ZHANG L Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl. Catal. B: Environ., 2013, 136-137: 112-121. |
[34] | NIU P, LIU G, CHENG H M.Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride.J. Phys. Chem. C, 2012, 116(20): 11013-11018. |
[35] | KHRAISHEH M A M, AL-DEGS Y S, MCMINN W A M. Remediation of wastewater containing heavy metals using raw and modified diatomite.Chem. Eng. J., 2004, 99(2): 177-184. |
[36] | ELZEA J M, RICE S B.TEM and X-ray diffraction evidence for cristobalite and tridymite stacking sequences in opal.Clays & Clay Miner, 1996, 44: 492-500. |
[37] | DONG L, WU Y, SUN M, et al.Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts.J. Mater. Chem., 2011, 21: 15171-15174. |
[38] | WANG Y J, BAI X J, PAN C S, et al.Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4.J. Mater. Chem., 2012, 22(23): 11568-11573. |
[39] | ZIMMERMAN J L, WILLIAMS R, KHABASHESKU V N, et al.Synthesis of spherical carbon nitride nanostructures.Nano Lett., 2001, 1: 731-734. |
[40] | JIANG L, CHEN L L, ZHU J J, et al.Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity.Dalton Trans., 2013, 42(44): 15726-15734. |
[41] | ZHANG Y, THOMAS A, ANTONIETTI M, et al.Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments.J. Am. Chem. Soc., 2009, 131(1): 50-51. |
[42] | XIAGN Q, YU J, JARONIEC M.Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites.J. Phys. Chem. C, 2011, 115(15): 7355-7363. |
[43] | ZHANG P F, ZHANG J L, CHEN F, et al.Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation.Appl. Catal. B, 2009, 85(3/4): 148-154. |
[44] | YIN M C, LI Z S, KOU J H, et al.Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system.Environ. Sci. Technol., 2009, 43(21): 8361-8366. |
[45] | YIN M C, LI Z S, KOU J H, et al.Diatomite-immobilized BiOI hybrid photocatalyst: facile deposition synthesis and enhanced photocatalytic activity.Appl. Surf. Sci., 2015, 353: 1179-1185. |
[46] | LI Y P, ZHAN J, HUANG L Y, et al.Synthesis and photocatalytic activity of a bentonite/g-C3N4 composite.RSC Adv., 2014, 4(23): 11831-11839. |
[1] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. |
[2] | WU Xiangquan, TENG Jiachen, JI Xiangxu, HAO Yubo, ZHANG Zhongming, XU Chunjie. Textured Porous Al2O3-SiO2 Composite Ceramic Platelet-sphere Slurry: Characteristics and Simulation of Light Intensity Distribution [J]. Journal of Inorganic Materials, 2024, 39(7): 769-778. |
[3] | CHENG Bo, AN Xiaohang, LI Dinghua, YANG Rongjie. Flame-retardant Properties and Transformation of Flame-retardant Mechanisms of EVA: Effect of ATH/ADP Ratio [J]. Journal of Inorganic Materials, 2024, 39(5): 509-516. |
[4] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[5] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[6] | JIA Yuna, CAO Xu, JIAO Xiuling, CHEN Dairong. Preparation of Alumina Ceramic Continuous Fibers with Inorganic Acidic Aluminum Sol as Precursor [J]. Journal of Inorganic Materials, 2023, 38(11): 1257-1264. |
[7] | WU Wei, BAKHET Shahd, ASANTE Naomi Addai, KAREEM Shefiu, KOMBO Omar Ramadhan, LI Binbin, DAI Honglian. In vitro Study of Biphasic Calcium Magnesium Phosphate Microspheres for Angiogenesis and Bone Formation [J]. Journal of Inorganic Materials, 2023, 38(7): 830-838. |
[8] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[9] | LIU Kai, SUN Ce, SHI Yusheng, HU Jiaming, ZHANG Qingqing, SUN Yunfei, ZHANG Song, TU Rong, YAN Chunze, CHEN Zhangwei, HUANG Shangyu, SUN Huajun. Current Status and Prospect of Additive Manufacturing Piezoceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 278-288. |
[10] | GAO Tian, XIAO Qinglin, XU Chenyang, WANG Xuebin. Blowing Route to Fabricate Foams of 2D Materials [J]. Journal of Inorganic Materials, 2020, 35(12): 1315-1326. |
[11] | LIU Zhang-Shuo, LIU Ji, DAI Yang, LI Xiao-Feng, YU Zhong-Zhen, ZHANG Hao-Bin. Bioinspired Ultrathin MXene/CNC Composite Film for Electromagnetic Interference Shielding [J]. Journal of Inorganic Materials, 2020, 35(1): 99-104. |
[12] | LI Meng-Xia, LU Yue, WANG Li-Bin, HU Xian-Luo. Controlled Synthesis of Core-shell Structured Mn3O4@ZnO Nanosheet Arrays for Aqueous Zinc-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 86-92. |
[13] | ZHANG Tian-Yu, CUI Cong, CHENG Ren-Fei, HU Min-Min, WANG Xiao-Hui. Fabrication of Planar Porous MXene/Carbon Composite Electrodes by Simultaneous Ammonization/Carbonization [J]. Journal of Inorganic Materials, 2020, 35(1): 112-118. |
[14] | LIN De-Bao, FAN Ling-Cong, DING Mao-Mao, XIE Jian-Jun, LEI Fang, SHI Ying. Optical Transmittance Model Construction for ZnO Transparent Ceramic and Experimental Verification [J]. Journal of Inorganic Materials, 2019, 34(8): 851-856. |
[15] | Chang-Xing HUANG, Jun CUI, Yuan-Sheng PEI. B2O3-SiO2-Na2O Controlled-release Material: Synthetic Parameters Optimization and Release Mechanisms Exploration [J]. Journal of Inorganic Materials, 2019, 34(6): 653-659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||