Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (8): 851-856.DOI: 10.15541/jim20180418
Previous Articles Next Articles
LIN De-Bao,FAN Ling-Cong,DING Mao-Mao,XIE Jian-Jun,LEI Fang,SHI Ying()
Received:
2018-09-10
Revised:
2018-12-24
Published:
2019-08-20
Online:
2019-05-29
Supported by:
CLC Number:
LIN De-Bao, FAN Ling-Cong, DING Mao-Mao, XIE Jian-Jun, LEI Fang, SHI Ying. Optical Transmittance Model Construction for ZnO Transparent Ceramic and Experimental Verification[J]. Journal of Inorganic Materials, 2019, 34(8): 851-856.
Fig. 3 Comparation of in-line optical transmittance of ZnO ceramics with different grain sizes between calculated values from the RGD scattering model and ZnO samples by SPS processing
2θ/(°) | (hkl) | Intensity/% | Angel α with (001) plane/(°) | 2θ/(°) | (hkl) | Intensity/% | Angel α with (001) plane/(°) |
---|---|---|---|---|---|---|---|
31.769 | 100 | 17.33 | 90 | 66.378 | 200 | 1.22 | 90 |
34.421 | 002 | 13.37 | 0 | 67.961 | 112 | 6.99 | 52.60 |
36.252 | 101 | 30.40 | 61.61 | 69.098 | 201 | 3.34 | 74.88 |
47.538 | 102 | 6.99 | 42.77 | 72.561 | 004 | 0.61 | 0 |
56.602 | 110 | 9.73 | 90 | 76.953 | 202 | 1.22 | 61.61 |
62.862 | 103 | 8.81 | 31.66 |
Table 1 Comparation of ZnO ceramics and standard pattern for ZnO measured by XRD (normalized intensity)
2θ/(°) | (hkl) | Intensity/% | Angel α with (001) plane/(°) | 2θ/(°) | (hkl) | Intensity/% | Angel α with (001) plane/(°) |
---|---|---|---|---|---|---|---|
31.769 | 100 | 17.33 | 90 | 66.378 | 200 | 1.22 | 90 |
34.421 | 002 | 13.37 | 0 | 67.961 | 112 | 6.99 | 52.60 |
36.252 | 101 | 30.40 | 61.61 | 69.098 | 201 | 3.34 | 74.88 |
47.538 | 102 | 6.99 | 42.77 | 72.561 | 004 | 0.61 | 0 |
56.602 | 110 | 9.73 | 90 | 76.953 | 202 | 1.22 | 61.61 |
62.862 | 103 | 8.81 | 31.66 |
θ=90-α/(°) | 0 | 30 | 45 | 60 | 90 |
---|---|---|---|---|---|
(<15) | (15-37.5) | (37.5-52.5) | (52.5-75) | (75-90) | |
sinθ | 0 | 0.5 | 0.707 | 0.866 | 1 |
P0 | P01(28.3%) | P02(42.0%) | P03(7.0%) | P04(8.8%) | P05(14.0%) |
Table 2 Hypothesis calculation of standard pattern for ZnO
θ=90-α/(°) | 0 | 30 | 45 | 60 | 90 |
---|---|---|---|---|---|
(<15) | (15-37.5) | (37.5-52.5) | (52.5-75) | (75-90) | |
sinθ | 0 | 0.5 | 0.707 | 0.866 | 1 |
P0 | P01(28.3%) | P02(42.0%) | P03(7.0%) | P04(8.8%) | P05(14.0%) |
θ/(°) f | 0 | 30 | 45 | 60 | 90 | μ(f) |
---|---|---|---|---|---|---|
(<15) | (15-37.5) | (37.5-52.5) | (52.5-75) | (75-90) | ||
0 | 28.28% | 41.95% | 6.99% | 8.81% | 13.98% | 0.4752 |
4.0% | 31.13% | 40.62% | 5.69% | 7.46% | 15.09% | 0.4588 |
9.2% | 34.57% | 43.65% | 6.13% | 5.58% | 10.07% | 0.4106 |
24.8% | 46.62% | 39.03% | 4.34% | 4.34% | 5.67% | 0.3201 |
Table 3 Hypothesis calculation of standard pattern for ZnO
θ/(°) f | 0 | 30 | 45 | 60 | 90 | μ(f) |
---|---|---|---|---|---|---|
(<15) | (15-37.5) | (37.5-52.5) | (52.5-75) | (75-90) | ||
0 | 28.28% | 41.95% | 6.99% | 8.81% | 13.98% | 0.4752 |
4.0% | 31.13% | 40.62% | 5.69% | 7.46% | 15.09% | 0.4588 |
9.2% | 34.57% | 43.65% | 6.13% | 5.58% | 10.07% | 0.4106 |
24.8% | 46.62% | 39.03% | 4.34% | 4.34% | 5.67% | 0.3201 |
[1] |
COBLE R L . Sintering alumina: effect of atmospheres. Journal of the American Ceramic Society, 1962,45(3):123-127.
DOI URL |
[2] | MAO XIAOJIAN, WANG SHIWEI, SHIMA S , et al. Transparent polycrystalline alumina ceramics with orientated optical axes. Journal of the American Ceramic Society, 2008,91(10):3431-3433. |
[3] |
APETZ ROLF, MICHEL P B BRUGGEN . Transparent alumina: a light-scattering model. Journal of the American Ceramic Society, 2003,86(3):480-486.
DOI URL |
[4] | KRELL ANDREAS, BLANK PAUL, MA HONGWEI , et al. Transparent sintered corundum with high hardness and strength. Journal of the American Ceramic Society, 2010,86(1):12-18. |
[5] | KRELL ANDREAS, KLIMAKE JENS, HUTZLER THOMAS , et al. Advanced spinel and sub-μm Al2O3 for transparent armour applications. Journal of the European Ceramic Society, 2009,29(2):275-281. |
[6] |
BERNARD-GRANGER GUILLAUME, GUIZARD CHRISTIAN . Influence of MgO or TiO2 doping on the sintering path and on the optical properties of a submicronic alumina material. Journal of the American Ceramic Society, 2008,91(5):1703-1706.
DOI URL |
[7] | LUCKEY D . A fast inorganic scintillator. Nuclear Instruments & Methods, 1968,62(1):119-120. |
[8] | GOROKHOVA E I, ERON’KO S B, KUL’KOV A M , et al. Development and study of ZnO: in optical scintillation ceramic. Journal of Optical Technology C/c of Opticheskii Zhurnal, 2015,82(12):837. |
[9] | RODNYO P A, CHERNENKO K A, GOROKHOVA E I , et al. Novel scintillation material-ZnO transparent ceramics. IEEE Transactions on Nuclear Science, 2012,59(5):2152-2155. |
[10] | PRAKASAM MYTHILI, VIRAPHONG OUDOMSACK, MICHAU DOMINIQUE , et al. Critical parameters to obtain Yb3+ doped Lu2O3 and ZnO transparent ceramics. Ceramics International, 2014,40(1):1859-1864. |
[11] | GOROKHOVA E I, RODNYIP A, LOKSHIN E P , et al. Structural, optical, and scintillation characteristics of ZnO ceramics. Journal of Optical Technology C/c of Opticheskii Zhurnal, 2011,78(11):753-760. |
[12] | 赵宇 . 镓掺杂氧化锌纳米晶透明陶瓷的制备. 长春: 吉林大学硕士学位论文, 2008. |
[13] | QIN JIEMING, ZHANG YING, CAO JIANMING , et al. Characterization of the transparent n-type ZnO ceramic with low resistivity prepared under high pressure. Acta Physics Sinica, 2011,60(3):431-435. |
[14] | HULST HC, TWERSKY V . Light Scattering by Small Particles. Hoboken: John Wiley, 1957. |
[15] |
BARBER P W, WANG D S . Rayleigh-Gans-Debye applicability to scattering by nonspherical particles: corrigenda. Applied Optics, 1978,17(5):797.
DOI URL |
[16] |
BOND W L . Measurement of the refractive indices of several crystals. Journal Of Applied Physics, 1965,36(5):1674-1677.
DOI URL |
[17] |
WEN T C SHETTY D K KRELL A . On the effect of birefringence on light transmission in polycrystalline magnesium fluoride. Journal of the American Ceramic Society, 2015,98(3):829-837.
DOI URL |
[18] | WEN TZUCHIEN . Effect of grain size on optical transmittance of birefringent polycrystalline ceramics. Salt Lake City: The University of Utah, 2016. |
[19] |
YOICHI SATO, JUN AKIYAMA, TAKUNORI TAIRA . Orientation control of micro-domains in anisotropic laser ceramics. Optical Materials Express, 2013,3(6):829-841.
DOI URL |
[20] |
SUZUKI T S . Control of texture in ZnO by slip casting in a strong magnetic field and heating, Chemistry Letters, 2002,31(12):1204-1205.
DOI URL |
[1] | XU Hao, QIAN Wei, HUA Yinqun, YE Yunxia, DAI Fengze, CAI Jie. Effects of Micro Texture Processed by Picosecond Laser on Hydrophobicity of Silicon Carbide [J]. Journal of Inorganic Materials, 2023, 38(8): 923-930. |
[2] | CHAN Siyi, TU Juping, HUANG Ke, SHAO Siwu, YANG Zhiliang, LIU Peng, LIU Jinlong, CHEN Liangxian, WEI Junjun, AN Kang, ZHENG Yuting, LI Chengming. Uniform Growth of Two-inch MPCVD Optical Grade Diamond Film [J]. Journal of Inorganic Materials, 2023, 38(12): 1413-1419. |
[3] | WAN Jiabao, ZHANG Minghui, SU Huaiyu, CAO Zhijun, LIU Xuechao, XIE Jiansheng, WANG Xiangyuan, SHI Yinghui, WANG Liang, LEI Shuijin. Structural, Thermal, and Optical Properties of GeO2-La2O3-TiO2 Glasses [J]. Journal of Inorganic Materials, 2023, 38(10): 1230-1236. |
[4] | ZOU Shun, HE Xiyun, ZENG Xia, QIU Pingsun, LING Liang, SUN Dazhi. Microstructure and Properties of Bi-doped Yttrium Iron Garnet Magneto-optical Ceramics Prepared by Hot-pressing Sintering Process [J]. Journal of Inorganic Materials, 2022, 37(7): 773-779. |
[5] | XIAO Shulin, DAI Zhonghua, LI Dingyan, ZHANG Fanbo, YANG Lihong, REN Xiaobing. Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 520-526. |
[6] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[7] | ZHANG Qingming, ZHU Min, ZHOU Xiaoxia. CuO/ZnO Composite Electrocatalyst: Preparation and Reduction of CO2 to Syngas [J]. Journal of Inorganic Materials, 2021, 36(11): 1145-1153. |
[8] | ZHAO Changjiang,MA Chao,LIU Juncheng,LIU Zhigang,CHEN Yan. Sputtering Power on the Microstructure and Properties of MgF2 Thin Films Prepared with Magnetron Sputtering [J]. Journal of Inorganic Materials, 2020, 35(9): 1064-1070. |
[9] | ZHANG Dongshuo,CAI Hao,GAO Kaiyin,MA Zichuan. Preparation and Visible-light Photocatalytic Degradation on Metronidazole of Zn2SiO4-ZnO-biochar Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 923-930. |
[10] | YAO Xiyuan, LI Kezhi, REN Junjie, ZHANG Shouyang. Microstructure and Fatigue Behavior of High Texture Three-dimensional C/C Composites Prepared by Mixed Precursors [J]. Journal of Inorganic Materials, 2020, 35(5): 589-592. |
[11] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[12] | ZHANG Wei,GAO Peng,HOU Chengyi,LI Yaogang,ZHANG Qinghong,WANG Hongzhi. Chip Sensor for pH and Temperature Monitoring Based on ZnO Composite [J]. Journal of Inorganic Materials, 2020, 35(4): 416-422. |
[13] | ZHANG Zhi-Ming,FANG Xiao-Sheng. Preparation and Photodetection Property of ZnO Nanorods/ZnCo2O4 Nanoplates Heterojunction [J]. Journal of Inorganic Materials, 2019, 34(9): 991-996. |
[14] | ZHU Zhi-Xiang,ZHANG Qiang,ZHU Si-Yu,LU Cheng-Jia,LIU Yi,YANG Jia,WU Chao-Feng,CAO Lin-Hong,WANG Ke,GAO Zhi-Peng,ZHU Cheng-Zhi. Dynamic Breakdown of ZnO Varistor Ceramics under Pulsed Electric Field [J]. Journal of Inorganic Materials, 2019, 34(7): 715-720. |
[15] | Chao-Xiang SUN, Liang CHEN, Yu CHANG, Wei TIAN, Liang LI. A Self-powered UV-visible Photodetector Based on p-Se/Al2O3/n-ZnO Nanorod Array Heterojunction [J]. Journal of Inorganic Materials, 2019, 34(5): 560-566. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||