Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (2): 123-134.DOI: 10.15541/jim20150231
• Orginal Article • Previous Articles Next Articles
FENG Ai-Hu, YU Yun, SONG Li-Xin
Received:
2015-05-11
Revised:
2015-07-06
Published:
2016-02-20
Online:
2016-01-15
About author:
FENG Ai-Hu. E-mail: hpufengaihu@163.com
CLC Number:
FENG Ai-Hu, YU Yun, SONG Li-Xin. Research Progress of Graphene and Its Composites as Electrodes for Capacitive Deionization[J]. Journal of Inorganic Materials, 2016, 31(2): 123-134.
Electrode materials | Specific surface area/(m2∙g-1) | [Specific capacitance/ (F∙g-1)]/[Scan rate/ (mV∙s-1)] | Applied voltage/V | [Initial concentration/ (mg∙L-1)]/[Initial conductivity/(μS∙cm-1)] | Electrosorption capacity/(mg∙g-1) | Ref. |
---|---|---|---|---|---|---|
GR | 14.2 | 75.18/70.00 | 2.0 | -/~50 | 1.85 | [21] |
GR | 77.0 | - | 2.0 | 22.8/- | 0.46 | [17] |
GR | 222.1 | - | 2.0 | -/~55 | 1.35 | [26] |
GR | - | - | 2.0 | -/86.9 | 0.88 | [27] |
GR | 464.0 | 149.8/5.0 | 2.0 | -/500 | 8.60 | [19] |
RGO-RF | 406.4 | 135.7/10.0 | 2.0 | -/~58 | 1.42 | [35] |
3DMGA | 339.0 | 58.4/5.0 | 2.0 | -/~105 | 5.39 | [37] |
3DGHPC | 384.4 | 80.34/10.00 | 1.2 | -/60 | 6.18 | [38] |
GHMCS | 400.4 | 43.22/10.00 | 1.6 | -/68.5 | 2.30 | [39] |
STGS | 305.0 | 57/10 | 1.5 | -/~106 | 4.95 | [40] |
GS | 356.0 | 205.2/5.0 | 1.2 | 500/- | 14.90 | [41] |
KOH-activated GR | 3513.0 | - | 2.0 | 70/150 | 11.86 | [46] |
20%GR+AC | 779.0 | 181/1 | 1.2 | -/100 | 2.94 | [48] |
5%GR+MC | 685.2 | 89.5/1.0 | - | -/~90 | 0.73 | [49] |
GR+10%CNTs | 479.5 | 68/10 | 2.0 | -/57 | 1.41 | [53] |
10%GR+CNTs | 438.6 | 311.1/10.0 | 1.6 | -/100 | 0.88 | [54] |
GR+10%SWCNTs | 391.0 | 213/10 | 2.0 | 780/1540 | 26.42 | [55] |
GR+15% SnO2 | - | 323/5 | 1.4 | -/~61 | 1.49 | [60] |
GR+MnO2-NPs | - | 180/10 | 1.2 | -/~100 | ~3.50 | [61] |
GR+MnO2-NRs | - | 292/10 | 1.2 | -/~100 | 5.01 | [61] |
GR+Ag | - | 114.7/25.0 | 1.5 | -/- | - | [64] |
GR+Ag@C | - | 107.6/25.0 | 1.5 | -/- | - | [64] |
GR+TiO2 | 187.6 | 142.6/5.0 | 1.2 | 500/- | 15.10 | [66] |
GR+20%TiO2 | - | 443/10 | 0.8 | ~300/- | 9.10 | [67] |
GR+4%PANI | 394.0 | - | 1.2 | 500/- | - | [71] |
GR+PCNF | 474.0 | 151/- | 1.2 | 100/- | 7.80 | [75] |
10%GR+ACF | 621.0 | 193/5 | 1.2 | 400/- | 7.20 | [76] |
Table 1 Comparison of the performance among different graphene-based electrode materials
Electrode materials | Specific surface area/(m2∙g-1) | [Specific capacitance/ (F∙g-1)]/[Scan rate/ (mV∙s-1)] | Applied voltage/V | [Initial concentration/ (mg∙L-1)]/[Initial conductivity/(μS∙cm-1)] | Electrosorption capacity/(mg∙g-1) | Ref. |
---|---|---|---|---|---|---|
GR | 14.2 | 75.18/70.00 | 2.0 | -/~50 | 1.85 | [21] |
GR | 77.0 | - | 2.0 | 22.8/- | 0.46 | [17] |
GR | 222.1 | - | 2.0 | -/~55 | 1.35 | [26] |
GR | - | - | 2.0 | -/86.9 | 0.88 | [27] |
GR | 464.0 | 149.8/5.0 | 2.0 | -/500 | 8.60 | [19] |
RGO-RF | 406.4 | 135.7/10.0 | 2.0 | -/~58 | 1.42 | [35] |
3DMGA | 339.0 | 58.4/5.0 | 2.0 | -/~105 | 5.39 | [37] |
3DGHPC | 384.4 | 80.34/10.00 | 1.2 | -/60 | 6.18 | [38] |
GHMCS | 400.4 | 43.22/10.00 | 1.6 | -/68.5 | 2.30 | [39] |
STGS | 305.0 | 57/10 | 1.5 | -/~106 | 4.95 | [40] |
GS | 356.0 | 205.2/5.0 | 1.2 | 500/- | 14.90 | [41] |
KOH-activated GR | 3513.0 | - | 2.0 | 70/150 | 11.86 | [46] |
20%GR+AC | 779.0 | 181/1 | 1.2 | -/100 | 2.94 | [48] |
5%GR+MC | 685.2 | 89.5/1.0 | - | -/~90 | 0.73 | [49] |
GR+10%CNTs | 479.5 | 68/10 | 2.0 | -/57 | 1.41 | [53] |
10%GR+CNTs | 438.6 | 311.1/10.0 | 1.6 | -/100 | 0.88 | [54] |
GR+10%SWCNTs | 391.0 | 213/10 | 2.0 | 780/1540 | 26.42 | [55] |
GR+15% SnO2 | - | 323/5 | 1.4 | -/~61 | 1.49 | [60] |
GR+MnO2-NPs | - | 180/10 | 1.2 | -/~100 | ~3.50 | [61] |
GR+MnO2-NRs | - | 292/10 | 1.2 | -/~100 | 5.01 | [61] |
GR+Ag | - | 114.7/25.0 | 1.5 | -/- | - | [64] |
GR+Ag@C | - | 107.6/25.0 | 1.5 | -/- | - | [64] |
GR+TiO2 | 187.6 | 142.6/5.0 | 1.2 | 500/- | 15.10 | [66] |
GR+20%TiO2 | - | 443/10 | 0.8 | ~300/- | 9.10 | [67] |
GR+4%PANI | 394.0 | - | 1.2 | 500/- | - | [71] |
GR+PCNF | 474.0 | 151/- | 1.2 | 100/- | 7.80 | [75] |
10%GR+ACF | 621.0 | 193/5 | 1.2 | 400/- | 7.20 | [76] |
[1] | SHANNON M A, BOHN P W, ELIMELECH M, et al.Science and technology for water purification in the coming decades.Nature, 2008, 452(7185): 301-310. |
[2] | ANDERSON M A, CUDERO A L, PALMA J.Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?Electrochimica Acta, 2010, 55(12): 3845-3856. |
[3] | ZOU L, VIDALIS I, STEELE D, et al.Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling.Journal of Membrane Science, 2011, 369(1/2): 420-428. |
[4] | YANG C M, CHOI W H, NA B K, et al.Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes.Desalination, 2005, 174(2): 125-133. |
[5] | WELGEMOED T J, SCHUTTE C F.Capacitive deionization dechnology™: an alternative desalination solution.Desalination, 2005, 183(1/2/3): 327-340. |
[6] | MURPHY G W, CAUDLE D D.Mathematical theory of electrochemical demineralization in flowing systems.Electrochimical Acta, 1967, 12: 1655-1664. |
[7] | JOHNSON A M, NEWMAN J.Desalting by means of porous carbon electrodes.Journal of the Electrochemical Society, 1971, 118(3): 510-517. |
[8] | FARMER J C, FIX D V, MACK G V, et al.Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes.Journal of Applied Electrochemistry, 1996, 26(10): 1007-1018. |
[9] | FARMER J C, FIX D V, MACK G V, et al.Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society, 1996, 143(1): 159-169. |
[10] | XU P, DREWES J E, HEIL D, et al.Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Research, 2008, 42(10/11): 2605-2617. |
[11] | VILLAR I, ROLDAN S, RUIZ V, et al.Capacitive deionization of NaCl solutions with modified activated carbon electrodes.Energy & Fuels, 2010, 24(6): 3329-3333. |
[12] | ZOU L, MORRIS G, QI D.Using activated carbon electrode in electrosorptive deionisation of brackish water.Desalination, 2008, 225(1/2/3): 329-340. |
[13] | RASINES G, LAVELA P, MAC AS C, et al.Electrochemical response of carbon aerogel electrodes in saline water.Journal of Electroanalytical Chemistry, 2012, 671: 92-98. |
[14] | PENG Z, ZHANG D S, SHI L Y, et al.Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures.The Journal of Physical Chemistry C, 2011, 115(34): 17068-17076. |
[15] | TSOURIS C, MAYES R, KIGGANS J, et al.Mesoporous carbon for capacitive deionization of saline water.Environment Science & Technology, 2011, 45(23): 10243-10249. |
[16] | WANG L, WANG M, HUANG Z H, et al.Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes.Journal of Materials Chemistry, 2011, 21(45): 18295-18299. |
[17] | LI H B, PAN L K, LU T, et al.A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization.Journal of Electroanalytical Chemistry, 2011, 653(1/2): 40-44. |
[18] | ZHANG D S, SHI L Y, FANG J H, et al.Influence of diameter of carbon nanotubes mounted in flow-through capacitors on removal of NaCl from salt water.Journal of Materials Science, 2006, 42(7): 2471-2475. |
[19] | JIA B P, ZOU L.Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionisation. Carbon, 2012, 50(6): 2315-2321. |
[20] | WANG Z, YUE L, LIU Z T, et al.Functional graphene nanocomposite as an electrode for the capacitive removal of FeCl3 from water.Journal of Materials Chemistry, 2012, 22(28): 14101-14107. |
[21] | LI H B, LU T, PAN L K, et al.Electrosorption behavior of graphene in NaCl solutions.Journal of Materials Chemistry, 2009, 19(37): 6773-6779. |
[22] | SINGH V, JOUNG D, ZHAI L, et al.Graphene based materials: Past, present and future.Progress in Materials Science, 2011, 56(8): 1178-1271. |
[23] | STOLLER M D, PARK S, ZHU Y W, et al.Graphene-based ultracapacitors.Nano Letters, 2008, 8(10): 3498-3502. |
[24] | HUMMERS W, OFFEMA R.Preparation of graphitic oxide.Journal of the American Chemical Society, 1958, 80: 1339. |
[25] | XU Y X, BAI H, LU G W, et al.Flexible graphene films via the filtration of water-soluble.Journal of the American Chemical Society, 2008, 130: 5856-5857. |
[26] | LI H B, ZOU L, PAN L K, et al.Novel graphene-like electrodes for capacitive deionization. Environment Science & Technology, 2010, 44: 8692-8697. |
[27] | WANG H, ZHANG D S, YAN T T, et al.Graphene prepared via a novel pyridine-thermal strategy for capacitive deionization.Journal of Materials Chemistry, 2012, 22(45): 23745-23748. |
[28] | JIA B P, ZOU L.Functionalized graphene as electrode material for capacitive deionization.Science of Advanced Materials, 2013, 5(8): 1111-1116. |
[29] | JIA B P, ZOU L.Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization.Chemical Physics Letters, 2012, 548: 23-28. |
[30] | SI Y, SAMULSKI E T.Synthesis of water soluble graphene.Nano Letters, 2008, 8(6): 1679-1682. |
[31] | DREYER D R, PARK S, BIELAWSKI C W, et al.The chemistry of graphene oxide.Chemical Society Reviews, 2010, 39: 228-240. |
[32] | LIU Y, NIE C Y, LIU X J, et al.Review on carbon-based composite materials for capacitive deionization.RSC Advances, 2015, 5: 15205-15225. |
[33] | WORSLEY M A, KUCHEYEV S O, SATCHER J H, et al.Mechanically robust and electrically conductive carbon nanotube foams.Applied Physics Letters, 2009, 94: 073115. |
[34] | LI C, SHI G.Three-dimensional graphene architectures.Nanoscale, 2012, 4(18): 5549-5563. |
[35] | WANG Z, DOU B J, ZHENG L, et al.Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material.Desalination, 2012, 299: 96-102. |
[36] | WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al.Synthesis of graphene aerogel with high electrical conductivity.Journal of the American Chemical Society, 2010, 132: 14067-14069. |
[37] | WANG H, ZHANG D S, YAN T T, et al.Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization.Journal of Materials Chemistry A, 2013, 1(38): 11778-11789. |
[38] | WEN X R, ZHANG D S, YAN T T, et al.Three-dimensional graphene- based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization.Journal of Materials Chemistry A, 2013, 1(39): 12334-12344. |
[39] | WANG H, SHI L Y, YAN T T, et al.Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization.Journal of Materials Chemistry A, 2014, 2(13): 4739-4750. |
[40] | YANG Z Y, JIN L J, LU G Q, et al.Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance.Advanced Functional Materials, 2014, 24(25): 3917-3925. |
[41] | XU X T, PAN L K, LIU Y, et al.Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific Reports, 2015, 5: 8458. |
[42] | LILLO-RODENAS M A, CAZORLA-AMOROS D, LINARES- SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism.Carbon, 2003, 41: 267-275. |
[43] | RAYMUNDO-PINERO E, AZAıS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation.Carbon, 2005, 43: 786-795. |
[44] | BARRANCO V, LILLO-RODENAS M A, LINARES-SOLANO A, et al. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes.Journal of Physical Chemistry C, 2010, 114: 10302-10307. |
[45] | ZHU Y W, MURALI S, STOLLER M D, et al.Carbon-based supercapacitors produced by activation of graphene.Science, 2011, 332: 1537-1541. |
[46] | LI Z, SONG B, WU Z K, et al.3D porous graphene with ultrahigh surface area for microscale capacitive deionization.Nano Energy, 2015, 11: 711-718. |
[47] | LEE J B, PARK K K, YOON S W, et al.Desalination performance of a carbon-based composite electrode.Desalination, 2009, 237(1): 155-161. |
[48] | LI H B, PAN L K, NIE C Y, et al.Reduced graphene oxide and activated carbon composites for capacitive deionization.Journal of Materials Chemistry, 2012, 22(31): 15556-15561. |
[49] | ZHANG D S, WEN X R, SHI L Y, et al.Enhanced capacitive deionization of graphene/mesoporous carbon composites.Nanoscale, 2012, 4(17): 5440-5446. |
[50] | GAO Y, PAN L K, ZHANG Y P, et al.Electrosorption of FeCl3 solution with carbon nanotubes and nanofibres film electrodes grown on graphite substrates.Surface Review Letters, 2007, 14(6): 1033-1037. |
[51] | LI H B, PAN L K, ZHANG Y P, et al.Ferric ion adsorption and electrodesorption by carbon nanotubes and nanofibres films.Water Science and Technology, 2009, 59(8): 1657-1663. |
[52] | PAN L K, WANG X Z, GAO Y, et al.Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes.Desalination, 2009, 244(1/2/3): 139-143. |
[53] | ZHANG D S, YAN T T, SHI L Y, et al.Enhanced capacitive deionization performance of graphene/carbon nanotube composites.Journal of Materials Chemistry, 2012, 22(29): 14696-14704. |
[54] | LI H B, LIANG S, LI J, et al.The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite.Journal of Materials Chemistry A, 2013, 1(21): 6335-6341. |
[55] | WIMALASIRI Y, ZOU L.Carbon nanotube/graphene composite for enhanced capacitive deionization performance.Carbon, 2013, 59: 464-471. |
[56] | WIMALASIRI Y, ZOU L.Response to "Comments on 'carbon nanotube/graphene composite for enhanced capacitive deionization performance' by Y. Wimalasiri and L. Zou".Carbon, 2015, 81: 847-849. |
[57] | SUN X, XIE M, WANG G K, et al.Atomic layer deposition of TiO2 on graphene for supercapacitors.Journal of The Electrochemical Society, 2012, 159(4): A364. |
[58] | QIAN Y, LU S B, GAO F L.Preparation of MnO2/graphene composite as electrode material for supercapacitors.Journal of Materials Science, 2011, 46(10): 3517-3522. |
[59] | SEEMA H, KEMP K C, CHANDRA V, et al.Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight.Nanotechnology, 2012, 23: 355705. |
[60] | EL-DEEN A G, BARAKAT N A M, KHALIL K A, et al. Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization.Ceramics International, 2014, 40(9): 14627-14634. |
[61] | EL-DEEN A G, BARAKAT N A M, KIM H Y. Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology.Desalination, 2014, 344: 289-298. |
[62] | PASRICHA R, GUPTA S, SRIVASTAVA A K.A facile and novel synthesis of Ag-graphene-based nanocomposites.Small, 2009, 5(20): 2253-2259. |
[63] | ZHENG L, ZHANG G N, ZHANG M, et al.Preparation and capacitance performance of Ag-graphene based nanocomposite.Journal of Power Sources, 2012, 201: 376-381. |
[64] | CAI P F, SU C J, CHANG W T, et al.Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.Marine Pollution Bulletin, 2014, 85(2): 733-737. |
[65] | ZHU C Z, GUO S J, WANG P, et al.One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets.Chemical Communications, 2010, 46(38): 7148-7150. |
[66] | YIN H J, ZHAO S L, WAN J W, et al.Three-dimensional graphene/ metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water.Advanced Materials, 2013, 25(43): 6270-6276. |
[67] | EL-DEEN A G, CHOI J H, KIM C S, et al. TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization.Desalination, 2015, 361: 53-64. |
[68] | LAI L F, YANG H P, WANG L, et al.Preparation of supercapacitor electrodes through selection of graphene surface functionalities.ACS Nano, 2012, 6(7): 5941-5951. |
[69] | ZHOU Y, QIN Z Y, LI L, et al.Polyaniline/multiwalled carbon nanotube composites with core-shell structures as supercapacitors electrode materials.Electrochimica Acta, 2010, 55(12): 3904-3908. |
[70] | LI Q.Application of polyaniline modified graphite electrodes for capacitive deionization of aqueous NaCl solution.Asian Journal of Chemistry, 2010, 22(10): 8126-8130. |
[71] | YAN C J, KANATHTHAGE Y W, SHORT R, et al.Graphene/ polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination, 2014, 344: 274-279. |
[72] | WU Q, XU Y X, YAO Z Y, et al.Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.ACS Nano, 2010, 4(4): 1963-1970. |
[73] | WANG M, HUANG Z H, WANG L, et al.Electrospun ultrafine carbon fiber webs for electrochemical capacitive desalination.New Journal of Chemistry, 2010, 34(9): 1843-1845. |
[74] | ZHOU Z P, WU X F, FONG H.Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors.Applied Physics Letters, 2012, 100: 023114-023115. |
[75] | BAI Y, HUANG Z H, YU X L, et al.Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization.Colloids and Surfaces A: Physicochemial and Engineering Aspects, 2014, 444: 153-158. |
[76] | DONG Q, WANG G, QIAN B, et al.Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization.Electrochimica Acta, 2014, 137: 388-394. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[12] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[13] | WANG Yue, WANG Xin, YU Xianli. Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide [J]. Journal of Inorganic Materials, 2025, 40(3): 305-313. |
[14] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[15] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||