[1] Wang X, Li X, Ito A, et al. Synthesis and characterization of hierarchically macroporous and mesoporous CaO-MO-SiO2-P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomaterialia, 2011, 7(10): 3638-3644.[2] Bagno A, Piovan A, Dettin M, et al. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bone, 2007, 40(3): 693-699.[3] Meyers S R, Grinstaff M W. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chemical Reviews, 2012, 112(3): 1615-1632.[4] Prestwich GD, Erickson I E, Zarembinski T I, et al. The translational imperative: making cell therapy simple and effective. Acta Biomaterialia, 2012, 8(12): 4200-4207.[5] Yan C, Sun J, Ding J. Critical areas of cell adhesion on micropatterned surfaces. Biomaterials, 2011, 32(16): 3931-3938.[6] Hynes R O. Integrins: bidirectional, allosteric signaling machines. Cell, 2002, 110(6): 673-687.[7] Collier J H, Segura T. Evolving the use of peptides as components of biomaterials. Biomaterials, 2011, 32(18): 4198-4204.[8] Williams D F. The role of short synthetic adhesion peptides in regenerative medicine; the debate. Biomaterials, 2011, 32(18): 4195-4197.[9] Ruoslahti E. RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology, 1996, 12: 697-715.[10] Dreier B, Raghunathan V K, Russell P, et al. Focal adhesion kinase knockdown modulates the response of human corneal epithelial cells to topographic cues. Acta Biomaterialia, 2012, 8(12): 4285-4294.[11] Hennessy K M, Pollot B E, Clem W C, et al. The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials, 2009, 30(10): 1898-1909.[12] Mark K, Park J, Bauer S, et al. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 2010, 339(1): 131-153.[13] Ceylan H, Tekinay A B, Guler M O. Selective adhesion and growth of vascular endothelial cells on bioactive peptide nanofiber functionalized stainless steel surface. Biomaterials. 2011, 32(34): 8797-8805.[14] Park J W, Kurashima K, Tustusmi Y, et al. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone. Acta Biomaterialia, 2011, 7(8): 3222-3229.[15] Su B H, Ran J G, Chen Z Q. Study on increasing bioactivity of Hydroxy-poly-calcium sodium phosphate appatite modified by cold plasma technique. Space Medicine & Medical Engineering, 2003, 16(1): 68-71.[16] Li G D, Zhou D L, Feng D G, et al. Preparation and properties of magnetic bioactive glass-ceramics doped with Mn-Zn ferrite. Journal of Inorganic Materials, 2008, 23(3): 621-625.[17] Xue M, Feng D G, Zhou D L, et al. Preparation of porous apatite-wollastonite bioactive glass ceramic (AW-GC) by dipping with polymer foams. Chinese Journal of Inorganic Chemistry, 2007, 23(4): 708-712.[18] Chen Q Z, Thouas G A. Fabrication and characterization of Sol-Gel derived 45S5 bioglass(R)-ceramic scaffolds. Acta Biomaterialia, 2011, 7(10): 3616-3626.[19] De Bartolo L, Morelli S, Lopez L C, et al. Biotransformation and liver-specific functions of human hepatocytes in culture on RGD-immobilized plasma-processed membranes. Biomaterials, 2005, 26(21): 4432-4441.[20] Marelli B, Ghezzi C E, Mohn D, et al. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials, 2011, 32(34): 8915-8926.[21] Goel A, Rajagopal R R, Ferreira J M. Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO- SrO-SiO2-P2O5-CaF2 glasses. Acta Biomaterialia, 2011, 7(11): 4071-4080.[22] Ji J, Bar-On B, Wagner H D. Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13: 185-193.[23] Shiwaku Y, Anada T, Yamazaki H, et al. Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates. Acta Biomaterialia, 2012, 8(12): 4417-4425.[24] Hall A. Rho GTPases and the actin cytoskeleton. Science, 1998, 279(23): 509-514.[25] Yang C, Czech L, Gerboth S, et al. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biology, 2007, 5(11): e317. |