Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (8): 792-800.DOI: 10.15541/jim20160563
• Orginal Article • Previous Articles Next Articles
CHEN Yu-Fang1, LI Yu-Jie2, ZHENG Chun-Man2, XIE Kai2, CHEN Zhong-Xue3
Received:
2016-10-10
Revised:
2017-01-04
Published:
2017-08-10
Online:
2017-07-19
Supported by:
CLC Number:
CHEN Yu-Fang, LI Yu-Jie, ZHENG Chun-Man, XIE Kai, CHEN Zhong-Xue. Research Development on Lithium Rich Layered Oxide Cathode Materials[J]. Journal of Inorganic Materials, 2017, 32(8): 792-800.
Fig. 1 Scheme of crystal structure and cation occupancy of transition metal cation and lithium ions in layered rohomohedral phase and monoclinic structure (a) Layered rohomohedral phase; (b) Monoclinic phase[7, 9]
Fig. 2 Scheme of stacking fault and XRD patterns for various stacking fault in Li2MnO3 (a) Ionics stacking; (b) XRD simulation pattern of Li2MnO3 with various stacking fault)[2, 11]
Surface modified materials | Initial culombical efficiency (%) | Capacity rentention(%) | |
---|---|---|---|
Unelectrochemical activity oxides | Al2O3[ | [87.4, (77.1)][ 96, 98(92)][ | [90, 84, 89, 84, 87(60)][ 94.9(87.5)[ |
Electrochemical activity oxides | V2O5[ | 85(79)[ 85.1-100(79)[ | 90(50)[ 95(84.9)[ |
Fluorides | AlF3[ | 90.8(82.8)[ | 91.6(73.4)[ |
C Derivative | C [ | 96.7(84)[ | 92(44)[ 85.1(74.7) [ |
Other materials | AlPO4[ Li2SiO3[ | 92.2(77.1)[ 76.4(69.6)[ | 73(65)[ |
Table 1 Studies on coating the lithium-rich cathode materials
Surface modified materials | Initial culombical efficiency (%) | Capacity rentention(%) | |
---|---|---|---|
Unelectrochemical activity oxides | Al2O3[ | [87.4, (77.1)][ 96, 98(92)][ | [90, 84, 89, 84, 87(60)][ 94.9(87.5)[ |
Electrochemical activity oxides | V2O5[ | 85(79)[ 85.1-100(79)[ | 90(50)[ 95(84.9)[ |
Fluorides | AlF3[ | 90.8(82.8)[ | 91.6(73.4)[ |
C Derivative | C [ | 96.7(84)[ | 92(44)[ 85.1(74.7) [ |
Other materials | AlPO4[ Li2SiO3[ | 92.2(77.1)[ 76.4(69.6)[ | 73(65)[ |
[1] | ARMAND M, TARASCON J M.Building better batteries.Nature, 2008, 451(7179): 652-657. |
[2] | YU H, ZHOU H.High-energy cathode materials (Li2MnO3-LiMO2) for Lithium-ion batteries. The Journal of Physical Chemistry Letters, 2013, 4: 1268-1280. |
[3] | GOODENOUGH J B.Cathode materials: a personal perspective.J. Power Sources, 2007, 174(2): 996-1000. |
[4] | STROBEL P, LAMBERT-ANDRON B.Crystallographic and magnetic structure of Li2MnO3.J. Solid State Chem., 1988, 75(1): 90-98. |
[5] | MASSAROTTI V, CAPSONI D, BINI M, et al.Electric and Magnetic Properties of LiMn2O4- and Li2MnO3-type oxides.J. Solid State Chem., 1997, 131(1): 94-100. |
[6] | ARMSTRONG A R, HOLZAPFEL M, NOVAK P, et al.Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2.J. Am. Chem. Soc., 2006, 128(26): 8694-8698. |
[7] | BROUSSELY M, PERTON F, BIENSAN P, et al.LixNiO2, a promising cathode for rechargeable lithium batteries.J. Power Sources, 1995, 54(1): 109-114. |
[8] | BOULINEAU A, CROGUENNEC L, DELMAS C, et al.Reinvestigation of Li2MnO3 structure: electron diffraction and High resolution TEM.Chem. Mater., 2009, 21(18): 4216-4222. |
[9] | XIAO R, LI H, CHEN L.Density functional investigation on Li2MnO3.Chem. Mater., 2012, 24(21): 4242-4251. |
[10] | BAREÑO J, BALASUBRAMANIAN M, KANG S H, et al. Long- range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2.Chem. Mater., 2011, 23(8): 2039-2050. |
[11] | BOULINEAU A, CROGUENNEC L, DELMAS C, et al.Structure of Li2MnO3 with different degrees of defects.Solid State Ionics, 2010, 180(40): 1652-1659. |
[12] | CHEN Y F, CHEN Z X, XIE K.Effect of annealing on the first-cycle performance and reversible capabilities of lithium-rich layered oxide cathodes.The Journal of Physical Chemistry C, 2014, 118(22): 11505-11511. |
[13] | ZHANG QIAN, LIU WEI-WEI, FANG GUO-QING, et al.Structural and electrochemical performances of Li1+2xMn0.3+xNi0.3-3xCr0.4O2 synthesized by spray-dry method.Journal of Inorganic Materials, 2013, 28(6): 616-622. |
[14] | NUMATA K, SAKAKI C, YAMANAKA S.Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3.Solid State Ionics, 1999, 117(3/4): 257-263. |
[15] | THACKERAY M M, JOHNSON C S, VAUGHEY J T, et al.Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries.J. Mater. Chem., 2005, 15(23): 2257-2267. |
[16] | LEE E, KORITALA R, MILLER D J, et al.Aluminum and gallium substitution into 0.5Li2MnO3·0.5Li(Ni0.375Mn0.375Co0.25)O2 layered composite and the voltage fade effect.J. Electrochem. Soc., 2015, 162(3): A322-A329. |
[17] | JEONG J H, JIN B S, KIM W S, et al.The influence of compositional change of 0.3Li2MnO3·0.7LiMn1-xNiyCo0.1O2 (0.2≤x≤0.5, y=x-0.1) cathode materials prepared by co-precipitation.J. Power Sources, 2011, 196(7): 3439-3442. |
[18] | ZHANG L, TAKADA K, OHTA N, et al.Synthesis and electrochemistry of layered 0.6LiNi0.5Mn0.5O2·xLi2MnO3·yLiCoO2 (x+y= 0.4) cathode materials.Mater. Lett., 2004, 58(25): 3197-3200. |
[19] | BREGER J, JIANG M, DUPRE N, et al.High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution.J. Solid State Chem., 2005, 178(9): 2575-2585. |
[20] | LU Z, BEAULIEU L Y, DONABERGER R A, et al.Synthesis, structure, and electrochemical behavior of Li [ NixLi1/3-2x/3Mn2/3-x/3]O2.J. Electrochem. Soc., 2002, 149(6): A778-A791. |
[21] | LONG B R, CROY J R, DOGAN F, et al.Effect of cooling rates on phase separation in 0.5Li2MnO3·0.5LiCoO2 electrode materials for Li-ion batteries.Chem. Mater., 2014, 26(11): 3565-3572. |
[22] | KIM J S, JOHNSON C S, VAUGHEY J T, et al.Electrochemical and structural properties of xLi2M‘O3·(1-x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M‘ = Ti, Mn, Zr; 0≤x≤0.3).Chem. Mater., 2004, 16(10): 1996-2006. |
[23] | FRANCIS A S, MARKOVSKY B, SHARON D, et al.Study of the electrochemical behavior of the “inactive” Li2MnO3.Electrochim. Acta, 2012, 78: 32-39. |
[24] | ROBERTSON A D, BRUCE P G.Mechanism of electrochemical activity in Li2MnO3.Chem. Mater., 2003, 15(10): 1984-1992. |
[25] | KANG S H, KEMPGENS P, GREENBAUM S, et al.Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x, 0≤x≤0.5).J. Mater. Chem., 2007, 17(20): 2069-2077. |
[26] | WEI Z, XIA Y, QIU B, et al.Correlation between transition metal ion migration and the voltage ranges of electrochemical process for lithium-rich manganese-based material. J. Power Sources, 2015, 281: 7-10. |
[27] | ITO A, LI D, OHSAWA Y, et al.A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment.J. Power Sources, 2008, 183(1): 344-346. |
[28] | ITO A, LI D, SATO Y, et al.Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2.J. Power Sources, 2010, 195(2): 567-573. |
[29] | ITO A, SATO Y, SANADA T, et al.In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2.J. Power Sources, 2011, 196(16): 6828-6834. |
[30] | ZHENG J, GU M, XIAO J et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process.Nano Lett., 2013, 13(8): 3824-3830. |
[31] | JOHNSON C S, LI N, LEFIEF C, et al.Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50℃.Electrochem. Commun., 2007, 9(4): 787-795. |
[32] | LANZ P, VILLEVIEILLE C, NOVÁK P. Electrochemical activation of Li2MnO3 at elevated temperature investigated by in situ Raman microscopy.Electrochim. Acta, 2013, 109(0): 426-432. |
[33] | JOHNSON C S, LI N, LEFIEF C, THACKERAY M M.Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50℃.Electrochem. Commun., 2007, 9(4): 787-795. |
[34] | GREY C P, YOON W-S, REED J, et al.Electrochemical activity of li in the transition-metal sites of O3 Li [ Li(1-2x)/3Mn(2-x)/3Nix]O2. electrochem.Solid-State Lett., 2004, 7(9): A290-A293. |
[35] | GU L, XIAO D, HU Y S, et al.Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries.Adv. Mater., 2015, 27(13): 2134-2149. |
[36] | CROY J R, GALLAGHER K G, BALASUBRAMANIAN M, et al.Quantifying hysteresis and voltage fade in xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content.J. Electrochem. Soc., 2014, 161(3): A318-A325. |
[37] | CROY J R, GALLAGHER K G, BALASUBRAMANIAN M, et al.Examining hysteresis in composite xLi2MnO3·(1-x)LiMO2 cathode structures.The Journal of Physical Chemistry C, 2013, 117(13): 6525-6536. |
[38] | DREYER W, GUKLKE C, HERRMANN M.Hysteresis and phase transition in many-particle storage systems.Continuum Mech. Thermodyn., 2011, 23(3): 211-231. |
[39] | MOHANTY D, LI J, ABRAHAM D P, et al.Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion.Chem. Mater., 2014, 26(21): 6272-6280. |
[40] | DOGAN F, LONG B R, CROY J R, et al.Re-entrant lithium local environments and defect driven electrochemistry of Li-and Mn- rich Li-ion battery cathodes.J. Am. Chem. Soc., 2015, 137(6): 2328-2335. |
[41] | LI J, CAMARDESE J, SHUNMUGASUNDARAM R, et al.Synthesis and characterization of the lithium-rich core-shell cathodes with low irreversible capacity and mitigated voltage fade. Chem. Mater., 2015, 27(9): 3366-3377. |
[42] | MOHANTY D, LI J, ABRAHAM D P, et al.Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion.Chem. Mater., 2014, 26(21): 6272-6280. |
[43] | JOHNSON C S, LI N, LEFIEF C, et al.Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7).Chem. Mater., 2008, 20(19): 6095-6106. |
[44] | LI Y, BARENO J, BETTGE M, et al.Unexpected voltage fade in LMR-NMC oxides cycled below the “Activation” plateau.J. Electrochem. Soc., 2015, 162(1): A155-A161. |
[45] | GALLAGHER K G, CROY J R, BALASUBRAMANIAN M, et al.Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes.Electrochem. Commun., 2013, 33(0): 96-98. |
[46] | ZHANG X, MENG X, ELAM J W, et al. Electrochemical characterization of voltage fade of Li1.2Ni0.2Mn0.6O2 cathode. Solid State Ionics, 2014, 268, Part B(0): 231-235. |
[47] | KASAI M, NISHIMURA S, GUNJI A, et al.Electrochemical study on xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 (x=0.5) layered complex cathode showing voltage hysteresis. Electrochim. Acta, 2014, 146(0): 79-88. |
[48] | KAN Y, HU Y, LIN C-K, et al.Migration of Mn cations in delithiated lithium manganese oxides.PCCP, 2014, 16(38): 20697-20702. |
[49] | JEONG J H, JIN B S, KIM W S, et al.The influence of compositional change of 0.3Li2MnO3·0.7LiMn1-xNiyCo0.1O2 (0.2≤x≤0.5, y=x-0.1) cathode materials prepared by co-precipitation.J. Power Sources, 2011, 196(7): 3439-3442. |
[50] | HY S, CHENG J H, LIU J Y, et al.Understanding the role of Ni in stabilizing the lithium-rich high-capacity cathode material Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0≤x≤0.5).Chem. Mater., 2014, 26(24): 6919-6927. |
[51] | LIU J, LIU J, WANG R, et al.Degradation and structural evolution of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 during cycling.J. Electrochem. Soc., 2014, 161(1): A160-A167. |
[52] | ZHENG J, XU P, GU M, et al.Structural and chemical evolution of Li- and Mn-rich layered cathode material.Chem. Mater., 2015, 27(4): 1381-1390. |
[53] | JOHNSON C S, KIM J S, LEFIEF C, et al.The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes.Electrochem. Commun., 2004, 6(10): 1085-1091. |
[54] | JOHNSON C S, KIM J S, KROPF A J, et al. Structural and electrochemical evaluation of (1-x)Li2TiO3·xLiMn0.5Ni0.5O2 electrodes for lithium batteries. J. Power Sources, 2003, 119- 121(0): 139-144. |
[55] | LIU J, CHEN H, XIE J, et al.Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes.J. Power Sources, 2014, 251(0): 208-214. |
[56] | ITO A, SHODA K, SATO Y, et al.Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge. J. Power Sources, 2011, 196(10): 4785-4790. |
[57] | YU S-H, YOON T, MUN J, et al.Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries.Journal of Materials Chemistry A, 2013, 1(8): 2833-2839. |
[58] | YABUUCHI N, LU Y C, MANSOUR A N, et al.The influence of heat-treatment temperature on the cation distribution of LiNi0.5Mn0.5O2 and its rate capability in lithium rechargeable batteries.J. Electrochem. Soc., 2011, 158(2): A192-A200. |
[59] | YU C, WANG H, GUAN X, et al.Conductivity and electrochemical performance of cathode xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 (x=0.1, 0.2, 0.3, 0.4) at different temperatures.J. Alloys Compd., 2013, 546(0): 239-245. |
[60] | CROY J R, KIM D, BALASUBRAMANIAN M, et al.Countering the Voltage decay in high capacity xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) for Li+-Ion batteries.J. Electrochem. Soc., 2012, 159(6): A781-A790. |
[61] | VU A, QIN Y, LIN C K, et al.Effect of composition on the voltage fade phenomenon in lithium-, manganese-rich xLi2MnO3·(1-x)LiNiaMnbCocO2: A combinatorial synthesis approach.J. Power Sources, 2015, 294: 711-718. |
[62] | VERDE M G, LIU H, CARROLL K J, et al.Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2.ACS Applied Materials & Interfaces, 2014, 6(21): 18868-18877. |
[63] | YANG X, WANG D, YU R, et al.Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition.Journal of Materials Chemistry A, 2014, 2(11): 3899-3911. |
[64] | PERALTA D, COLIN J F, BOULINEAU A, et al.Role of the composition of lithium-rich layered oxide materials on the voltage decay.J. Power Sources, 2015, 280(0): 687-694. |
[65] | KANG S H, JOHNSON C S, VAUGHEY J T, et al.The Effects of acid treatment on the electrochemical properties of 0.5 Li2MnO3 ∙ 0.5 LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells.J. Electrochem. Soc., 2006, 153(6): A1186-A1192. |
[66] | KANG S H, THACKERAY M M.Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2 (M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment.Electrochem. Commun., 2009, 11(4): 748-751. |
[67] | WU Y, MANTHIRAM A.Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2-zLi[Mn0.5-yNi0.5-yCo2y]O2.Solid State Ionics, 2009, 180(1): 50-56. |
[68] | MYUNG S T, IZUMI K, KOMABA S, et al.Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries.The Journal of Physical Chemistry C, 2007, 111(10): 4061-4067. |
[69] | WANG Z, LIU E, GUO L, et al.Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating.Surf. Coat. Technol., 2013, 235(0): 570-576. |
[70] | GAO J, KIM J, MANTHIRAM A.High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries.Electrochem. Commun., 2009, 11(1): 84-86. |
[71] | GUO S, YU H, LIU P, et al.Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries.Journal of Materials Chemistry A, 2014, 2(12): 4422-4428. |
[72] | SUN Y K, LEE M J, YOON C S, et al.The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries.Adv. Mater., 2012, 24(9): 1192-1196. |
[73] | LI ZHONG, HONG JIAN-HE, HE GANG, et al.Effect of FePO4 coating on performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode material for Li-ion battery.Journal of Inorganic Materials, 2015, 30(2): 129-134. |
[74] | ZHENG J M, ZHANG Z R, WU X B, et al.The effects of AlF3 coating on the performance of Li [ Li0.2Mn0.54Ni0.13Co0.13 ] O2 positive electrode material for lithium-ion battery.J. Electrochem. Soc., 2008, 155(10): A775-A782. |
[75] | SONG B, ZHOU C, CHEN Y, et al.Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode.RSC Advances, 2014, 4(83): 44244-44252. |
[76] | CHEN J J, LI Z D, XIANG H F, et al.Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries.J. Solid State Electrochem., 2015, 19(4): 1027-1035. |
[77] | WU F, ZHANG X, ZHAO T, et al.Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries.ACS Applied Materials & Interfaces, 2015, 7(6): 3773-3781. |
[78] | CHEN Y F, XIE K, ZHENG C M, et al.Enhanced Li storage performance of LiNi0.5Mn1.5O4-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries.ACS Applied Materials & Interfaces, 2014, 6(19): 16888-16894. |
[79] | ZHAO J, WANG Z, GUO H, et al.Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material.Ceram. Int., 2015, 41(9, Part A): 11396-11401. |
[80] | LI Q, LI G, FU C, et al.K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries.ACS Applied Materials & Interfaces, 2014, 6(13): 10330-10341. |
[81] | JIN X, XU Q, LIU H, et al.Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery.Electrochim. Acta, 2014, 136(0): 19-26. |
[82] | CHEN Y F, ZHENG C M, CHEN Z X.The significance of the stable Rhombohedral structure in Li-rich cathodes for lithium-ion batteries.Ionics, 2017, 23(2): 367-375. |
[83] | JOHNSON C S, KORTE S D, VAUGHEY J T, et al. Structural and electrochemical analysis of layered compounds from Li2MnO3. J. Power Sources, 1999, 81-82: 491-495. |
[84] | DONG X, XU Y, XIONG L, et al.Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material.J. Power Sources, 2013, 243: 78-87. |
[85] | XU J, LEE D H, CLEMENT R J, et al.Identifying the critical role of li substitution in P2-Nax[LiyNizMn1-y-z]O2 (0<x, y, z<1) intercalation cathode materials for high-energy Na-ion batteries.Chem. Mater., 2014, 26(2): 1260-1269. |
[86] | YABUUCHI N, HARA R, KAJIYAMA M, et al. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Advanced Energy Materials, 2015, 4(13): 13072-1-3. |
[87] | LEE K S, MYUNG S T, BANG H J, et al.Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M=Ni, Mg, Al) spinel and its application for lithium secondary battery cathode.Electrochim. Acta, 2007, 52(16): 5201-5206. |
[88] | KARTHIKEYAN K, AMARESH S, LEE G W, et al.Electrochemical performance of cobalt free, Li1.2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries.Electrochim. Acta, 2012, 68: 246-253. |
[89] | TABUCHI M, NAKASHIMA A, ADO K, et al.The effects of preparation condition and dopant on the electrochemical property for Fe-substituted Li2MnO3. J. Power Sources, 2005, 146(1/2): 287-293. |
[90] | TABUCHI M, NAKASHIMA A, TAKEUCHI T, et al.Synthesis and electrochemical characterization of Fe and Ni substituted Li2MnO3—An effective means to use Fe for constructing “Co-free” Li2MnO3 based positive electrode material. J. Power Sources, 2011, 196(7): 3611-3622. |
[91] | LU Z, MACNEIL D D, DAHN J R.Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett., 2001, 4(11): A191-A194. |
[92] | KALATHIL A K, ARUNKUMAR P, KIM D H, et al.Influence of Ti4+ on the electrochemical performance of Li-rich layered oxides - high power and long cycle life of Li2Ru1-xTixO3 Cathodes.ACS Applied Materials & Interfaces, 2015, 7(13): 7118-7128. |
[93] | KNIGHT J C, NANDAKUMAR P, KAN W H, et al.Effect of Ru substitution on the first charge-discharge cycle of lithium-rich layered oxides. Journal of Materials Chemistry A, 2015, 3(5): 2006-2011. |
[94] | LI X, XIN H, LIU Y, et al.Effect of niobium doping on the microstructure and electrochemical properties of lithium-rich layered Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium ion batteries.RSC Advances, 2015, 5(56): 45351-45358. |
[95] | LIU X, HUANG T, YU A.Fe doped Li1.2Mn0.6-x/2Ni0.2-x/2FexO2 (x≤0.1) as cathode materials for lithium-ion batteries.Electrochim. Acta, 2014, 133(0): 555-563. |
[96] | KANG S H, AMINE K. Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55-0.5z)O2-zFz cathode materials for Li-ion secondary batteries.J. Power Sources, 2005, 146(1-2): 654-657. |
[97] | ZHANG H Z, LI F, Pan, GUI L, et al.The effect of polyanion- doping on the structure and electrochemical performance of Li-rich layered oxides as cathode for lithium-ion batteries.Journal of The Electrochemical Society, 2015, 162(9): A1899-A1904. |
[98] | ZHAO Y, LIU J T, WANG S B, et al.Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance.Advanced Functional Materials, 2016, 26(26): 4760-4767. |
[99] | LIM S N, SEO J Y, JUNG D S, et al.The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2 composite cathodes doped and co-doped with Mg and F.J. Electroanal. Chem., 2015, 740(0): 88-94. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[3] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||