[1] Zhang Y C, Snedaker M L, Birkel C S, et al. Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors. Nano Lett., 2012, 12(2): 1075–1080.[2] Miao L, Tanemura S, Huang R, et al. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. Appl. Mater. Inter., 2010, 2(8): 2355–2359.[3] Soni A, Zhao Y, Yu L, et al. Enhanced thermoelectric properties of solution grown Bi2Te3-xSex nanoplatelet composites. Nano Lett., 2012, 12(3): 1203–1209.[4] Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater., 2010, 22(36): 3970–3980.[5] Harman T C, Taylor P J, Walsh M P, et al. Quantum dot superlattice TE materials and devices. Science, 2002, 297: 2229–2232.[6] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413: 597–602.[7] Kim W, Singer S L,Majumdar A, et al. Cross-plane lattice and electronic thermal conductivities of ErAs:InGaAs/InGaAlAs superlattices. Appl. Phys. Lett., 2006, 88(24): 242107–1–3. [8] Zide J M O, Bahk J H,? Singh R, et al.?High efficiency semimetal/semiconductor nanocomposite thermoelectric materials. J. Appl. Phys., 2010, 108(12): 123702–1–5.[9] Kim I H, Choi S M, Seo W S, et al. Thermoelectric properties of Cu-dispersed Bi0.5Sb1.5Te3. Nanoscale Res. Lett., 2012, 7(2): 1–6.[10] Nolas G S, Sharp J, Goldsmid H J. Thermoelectrics Basic Principles and New Materials Developments. New York: Springer, 2001: 1–12.[11] Naylor A J, Koukharenko E, Nandhakumar I S, et al. Surfactant- mediated electrodeposition of bismuth telluride films and its effect on microstructural properties. Langmuir, 2012, 28: 8296– 8299.[12] Polvani D A, Meng J F, Chandra N V, et al. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3. Chem. Mater., 2001, 13(6): 2068–2071.[13] Walachová J, Zeip R, Zelinka J, et al. Room-temperature figure of merit of thin layers prepared by laser ablation from Bi2Te3 target. Appl. Phys. Lett., 2005, 87(8): 081902–1–3.[14] Zhao D, Zuo M, Geng H. Enhanced thermoelectric performance of Ga-added Bi0.5Sb1.5Te3 films by flash evaporation. Intermetallics, 2012, 31: 321–324. [15] Li F, Wang W. Electrodeposition of p-type BixSb2-xTey thermoelectric film from dimethyl sulfoxide solution. Electrochimi. Acta, 2010, 55(17): 5000–5005.[16] Bourgault D, Giroud G C, Caillault N, et al. Thermoelectric properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thin films deposited by direct current magnetron sputtering. Thin Solid Films, 2008, 516(23): 8579–8583.[17] Cao H, Venkatasubramanian R, Liu C, et al. Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition. Appl. Phys. Lett., 2012, 101(16): 162104–1–4.[18] Adurodija F O, Izumi H, Ishihara T, et al. Pulsed laser deposition of low-resistivity indium tin oxide thin films at low substrate temperature. Jpn. J. Appl. Phys., 1999, 38(5A): 2710–2716.[19] Peranio N, Eibl O, Nurnus J. Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J. Appl. Phys., 2006, 100(11): 114306–1–10.[20] Luo B, Deng Y, Wang Y, et al. Fabrication and growth mechanism of zinc blende and wurtzite CdTe nanowire arrays with different photoelectric properties. Cryst. Eng. Comm., 2012, 14: 7922– 7928.[21] Lin H J, Kang K J, Hwang J D, et al. Effect of annealing temperature on the thermoelectric properties of the Bi0.5Sb1.5Te3 thin films prepared by radio-frequency sputtering. Metallurgical and Materials Transactions A, 2013, 44(5): 2339–2345.[22] Kim D H, Lee G H, Kim O J. Influence of post-deposition annealing on thermoelectric properties of Bi–Sb–Te films prepared by sputtering. Semicond. Sci. Technol., 2007, 22(2): 132–136. |