Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (5): 529-534.DOI: 10.15541/jim20180304
Previous Articles Next Articles
Xin XU1,Shu-Rong WANG1,2(),Xun MA1,Shuai YANG1,Yao-Bin LI1,Hong-Bin YANG1
Received:
2018-07-04
Revised:
2018-07-04
Published:
2019-05-20
Online:
2019-05-14
Supported by:
CLC Number:
Xin XU, Shu-Rong WANG, Xun MA, Shuai YANG, Yao-Bin LI, Hong-Bin YANG. Comparative Study of Cu2ZnSnS4 Thin Films Prepared by Chalcogenide and Single Targets[J]. Journal of Inorganic Materials, 2019, 34(5): 529-534.
Sample | Cu/at% | Zn/at% | Sn/at% | S/at% | Cu/(Zn+Sn) | Zn/Sn |
---|---|---|---|---|---|---|
CZTS1 | 20.52 | 13.47 | 11.24 | 54.75 | 0.83 | 1.2 |
CZTS2 | 21.63 | 13.31 | 10.75 | 54.31 | 0.90 | 1.23 |
Table 1 Chemical composition of CZTS1 and CZTS2 thin film
Sample | Cu/at% | Zn/at% | Sn/at% | S/at% | Cu/(Zn+Sn) | Zn/Sn |
---|---|---|---|---|---|---|
CZTS1 | 20.52 | 13.47 | 11.24 | 54.75 | 0.83 | 1.2 |
CZTS2 | 21.63 | 13.31 | 10.75 | 54.31 | 0.90 | 1.23 |
Sample | Mobility /(cm2·V-1·s-1) | Charge carrier concentration/cm3 | Resistivity /(Ω·cm) |
---|---|---|---|
CZTS1* | 5.65 | 8.58×1017 | 0.94 |
CZTS2* | 4.36 | 6.88×1018 | 1.07 |
Table 2 Electrical properties of CZTS1* and CZTS2*
Sample | Mobility /(cm2·V-1·s-1) | Charge carrier concentration/cm3 | Resistivity /(Ω·cm) |
---|---|---|---|
CZTS1* | 5.65 | 8.58×1017 | 0.94 |
CZTS2* | 4.36 | 6.88×1018 | 1.07 |
Cell | Voc/mV | Jsc/ (mA·cm-2) | η/% | FF/% | RS/ (Ω·cm-2) | Rsh/ (Ω·cm-2) |
---|---|---|---|---|---|---|
Cell-1 | 611 | 21.28 | 5.11 | 39 | 12.7 | 151.8 |
Cell-2 | 594 | 18.56 | 4.13 | 37 | 14.4 | 135.1 |
Table 3 Parameters of cell-1 and Cell-2
Cell | Voc/mV | Jsc/ (mA·cm-2) | η/% | FF/% | RS/ (Ω·cm-2) | Rsh/ (Ω·cm-2) |
---|---|---|---|---|---|---|
Cell-1 | 611 | 21.28 | 5.11 | 39 | 12.7 | 151.8 |
Cell-2 | 594 | 18.56 | 4.13 | 37 | 14.4 | 135.1 |
[1] | JACKSON P, HARISKOS D, WUE RZ , et al. Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Physica Status Solidi (RRL)-Rapid Research Letters, 2015,9(1):28-31. |
[2] | KATAGIRI H, SAITOH K, WASHIO T , et al. Development of thin film solar cell based on Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2011,65(1):141-148. |
[3] | SHOCKLEY W, QUEISSER H J . Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 2004,32(3):510-519. |
[4] |
KATAGIRI H, JIMBO K, MAW W S , et al. Development of CZTS-based thin film solar cells. Thin Solid Films, 2009,517(7):2455-2460.
DOI URL |
[5] | LU FANG-YANG, HUANG JIA-LIANG SUN KAI-WEI et al. Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. NPG Asia Materials, 2017, 9(7): e401-1-8. |
[6] |
XU XIN, WANG SHU-RONG, MA XUN , et al. Optimization of sulfurization time for properties of Cu2ZnSnS4 films and cells by sputtering method. Journal of Materials Science: Materials in Electronics, 2018,29(22):19137-19146.
DOI URL |
[7] |
WANG K, GUNAWAN O, TODOROV T , et al. Thermally evaporated Cu2ZnSnS4 solar cells. Applied Physics Letters, 2010,97(14):2455-1155.
DOI URL |
[8] | MORIYA K, TANAKA K, UCHIKI H . Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition. Japanese Journal of Applied Physics, 2014,46(9A):5780-5781. |
[9] |
ChAUDHARI J J, JOSHI U S . Effects of complexing agent on earth-abundant environmentally friendly Cu2ZnSnS4 thin film solar cells prepared by Sol-Gel deposition. Applied Physics A, 2018,124(7):465-473.
DOI URL |
[10] | TAO JIA-HUA, LIU JUN-FENG, CHEN LEI-LEI , et al. 7.1% efficienct co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chemistry, 2016,18(2):550-587. |
[11] | ZENG X, TAI K F, ZHANH T L , et al. Cu2ZnSn(S,Se)4 kesterite solar with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials & Solar Cells, 2014,124(5):55-60. |
[12] | ÖZDAL T, KAVAK H . Determination of crystallization threshold temperature for Sol-Gel spin coated Cu2ZnSnS4 thin films. Ceramics International, 2018,44(15):18928-1893. |
[13] |
FUKANO T, TAJIMA S, ITO T . Enhancement of conversion efficiency of Cu2ZnSnS4 thin film solar cells by improvement of sulfurization conditions. Applied Physics Express, 2013, 6(6): 062301-1-3.
DOI URL |
[14] | SHIN B, GUNAWAN O, ZHU Y , et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 2013,21(1):72-76. |
[15] | YAN HANG, HUANG JIA-LIANG, LIU FANG-YANG , et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 2018,3(9):764-772. |
[16] | YANG MIN, WANG SHURONG, JIANG ZHI , et al. Cu2ZnSnS4 thin film solar cells prepared by sulfurization of sputtered precursors. Bulletin of the Chinese Ceramic Society, 2015,34(Supplement):222-226. |
[17] | LI ZHI-SHAN, WANG SHU-RONG, JIANG ZHI , et al. Cu2ZnSnS4 thin films prepared by magnetron. Bulletin of the Chinese Ceramic Society, 2015,34(Supplement):127-131. |
[18] |
LISCO F, KAMINSKI P M, ABBAS A , et al. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering. Thin Solid Films, 2015,574(1):43-51.
DOI URL |
[19] | CHEN S, WANG L W, WALSH A , et al. Abundance of CuZn+SnZn and 2CuZn+SnZn defect clusters in kesterite solar cells. Applied Physics Letters, 2012, 101(22): 223901-1-4. |
[20] |
ZHAO WAN-GEN, WANG GANG, TIAN QING-WEN , et al. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based Sol-Gel route using SnS2 as Sn source. ACS Applied Materials &Interfaces, 2014,6(15):12650-12655.
DOI URL PMID |
[21] |
MOUSEL M, SCHWARZ T, DJEMOUR R , et al. Cu-rich precursors improve kesterite solar cells. Advanced Energy Materials, 2014, 4(2): 1300543-1-6.
DOI URL |
[22] |
FERNANDES P A, SALOME P M P, CUNHA A F D . Study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D Applied Physics, 2010, 43(21): 215403-1-11.
DOI URL |
[1] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[2] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[3] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[4] | Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure [J]. Journal of Inorganic Materials, 2019, 34(6): 590-598. |
[5] | LI Jia-Yan, CAI Min, WU Xiao-Wei, TAN Yi. Recycling Polycrystalline Silicon Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(9): 987-992. |
[6] | XU Shun-Jian, XIAO Zong-Hu, LUO Xiao-Rui, ZHONG Wei, LOU Yong-Ping, OU Hui. Cooperative Effect of Carbon Nanotubes and Dimethyl Sulfoxide on PEDOT:PSS Hole Transport Layer in Planar Perovskite Solar cells [J]. Journal of Inorganic Materials, 2018, 33(6): 641-647. |
[7] | MENG Xiang-Dong, YIN Mo, SHU Ting, HU Yue, SUN Meng, YU Zhao-Liang, LI Hai-Bo. Research Progress on Counter Electrodes of Quantum Dot-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(5): 483-493. |
[8] | CHENG Hou-Yan, LUO Jun, HUANG Li-Qun, LI Jia-Ke, YANG Zhi-Sheng, GUO Ping-Chun, WANG Yan-Xiang, ZHANG Qi-Feng. Preparation of Flexible Dye-sensitized Solar Cells Based on Hierarchical Structure ZnO Nanosheets [J]. Journal of Inorganic Materials, 2018, 33(5): 507-514. |
[9] | WANG Fo-Gen, CHEN Yun-Lu, REN Sheng-Qiang, ZHANG Jia-Yuan, WU Li-Li, FENG Liang-Huan. Properties of CdS:Al Films Deposited by Magnetron Sputtering [J]. Journal of Inorganic Materials, 2017, 32(4): 413-417. |
[10] | LIU Yong-Qiang, HUANG Hao, ZHAI Jin-Sheng, MA Meng-Jun, FAN Jia-Jie. Graphene Quantum Dots/CdS/CdSe Co-Sensitized Solar Cells [J]. Journal of Inorganic Materials, 2017, 32(10): 1042-1048. |
[11] | WANG Wei-Qi, ZHENG Hui-Feng, LU Guan-Hong, LIU Yang-Qiao, SUN Jing, GAO Lian. Recent Progress on Applications of Nano Metal Oxides in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(9): 897-907. |
[12] | FU Ming, CHENG Si-Guo, WANG Yue, ZHOU Hong, FAN Lin. Effects of Te-Bi Glass Frit on Performances of Front Silver Contacts for Crystalline Silicon Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(8): 785-790. |
[13] | YIN Yue-Feng, LIANG Gui-Jie, ZHANG Qiang, PAN Zheng, LI Wang-Nan, LI Zai-Fang. Optimization of Dye-sensitized Solar Cells Prepared by Pechini Sol-Gel Method [J]. Journal of Inorganic Materials, 2016, 31(7): 739-744. |
[14] | LI Ling, XIAO Jun-Ying, CUI Mi-Dou, TAI You-Yi, PANG Yong-Wen, HAN Song, LI Xiao-Wei. Boron and Sulfur Co-doped TiO2 Nanofilm as High Efficiency CdS Quantum-dot-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(6): 627-633. |
[15] | LU Guan-Hong, ZHAO Xin-Luo, WANG Yan, ZHU Shu-Ying, SUN Jing, XIE Xiao-Feng. Effects of SnS Doping on Photovoltaic Performance of P3HT:PCBM Multilayer Heterojunction Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(3): 263-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||