[1] NAN C W, BICHURIN M I, DONG S X, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys., 2008, 103(3): 031101-1-35.[2] XIONG R, ZHOU Z P. Development of Magnetoelectric Material. Information Recording Materials, 2006, 7(6): 26-31.[3] HE H C, LIN Y H, NAN C W. Multiferroic magnetoelectric composite thin films. Chinese Science Bulletin, 2008, 53(10): 1136-1148.[4] MA J, HU J, LI Z, et al. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater., 2011(23): 1062-1087.[5] ZHENG H, WANG J, LOFLAND S E, et al. Multiferroic BaTiO3- CoFe2O4 nanostructures. Science, 2004, 303(36): 661-663.[6] BAI F M, ZHANG H W, LI J F, et al. Magnetic and magnetoelectric properties of as-deposited and annealed BaTiO3-CoFe2O4 nanocomposite thin films. J. Phys. D: Appl. Phys., 2010, (43): 28502-1-7.[7] SHI Z, NAN C W, ZHANG J, et al. Magnetoelectric properties of multiferroic composites with pseudo-1-3-type structure. J. Appl. Phys, 2006, 99(12)-:124108-1-5.[8] DONG S X, ZHAI J Y, BAI F M, et al. Pull-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett., 2005, 87(6): 062502-1-3.[9] BAI F M, ZHENG H M, CAO H, et al. Epitaxially-induced high temperature (>900 K) cubic-tetragonal structural phase transition in BaTiO3 thin films. Appl. Phys. Lett., 2004, 85(18): 4109-4111.[10] NAN C W, LIU G, LIN Y H. Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett., 2005, 94(19): 197203-1-4.[11] LI T X, ZHANG M, HU Z, et al. Preparation and strong magnetoelectric effect of multiferroic BaTiO3/La2/3Sr1/3MnO3 composite film. Journal of Inorganic Materials. 2012, 27(3): 291-295.[12] LI N, SCHAFER S, DATTA R, et al. Microstructural and ferromagnetic resonance properties of epitaxial nickel ferrite films grown by chemical vapor depositon. Appl. Phys. Lett., 2012, 101(13): 132409-1-4.[13] LI N, LIU M, ZHOU Z, et al. Electrostatic tuning of ferromagnetic resonance and magnetoelectric interactions in ferrite-piezoelectric heterostructures grown chemical vapor depositon. Appl. Phys. Lett., 2011, 99(19): 192502-1-3.[14] CRANE S P, BIHER C, BRANDT M S, et al. Tuning magnetic properties of magnetoelectric BiFeO3-NiFe2O4 nanostructures. J. Magn. Magn. Mater., 2009, (321): 5-9.[15] BENATMANE N, CRANE S P, ZAVALICHE F, et al. Voltage-dependent ferromagnetic resonance in epitaxial multiferroic nanocomposites. Appl. Phys. Lett., 2010, 96(8): 082503-1-3.[16] PETROV V M, SRINIVASAN G, BICHURIN M I, et al. Theory of magnetoelectric effects in ferrite piezoelectric nanocomposites. Phys. Rev. B, 2007, 75(22): 224407-1-6.[17] ZHENG H, ZHAN Q, ZAVALICHE F, et al. Controlling self- assembled perovskite-spinel nanostructures. Nano Lett., 2006, 6(7): 1401-1407.[18] ZHENG H, STRAUB F, ZHAN Q, et al. Self-assembled growth of BiFeO3-CoFe2O4 nanostructure. Adv. Mater., 2006, (18): 2747-2752.[19] EOM C B, MARSHALL A F, LADERMAN S S, et al. Epitaxial and smooth films of a-axis YBa2Cu3O7. Science, 1990, (249): 1549-1551.[20] WU J, WANG J. ZnO as a buffer layer for growth of BiFeO3 thin films. J. Appl. Phys., 2010, 108(3): 034102-1-8.[21] BAI F, YU G, WANG Y, et al. Strong exchange bias with the (110)- oriented BiFeO3 films. Appl. Phys. Lett., 2012, 101(9): 092401-1-5.[22] YU G, BAI F, WEN D, et al. Epitaxial growth of high-tech perovsky-phased films by off-axis magnetron sputtering. Chinese Journal of Vacuum Science and Technology, 2013, 33(6): 578-585. [23] YAN L, BAI F, LI J, et al. Nano-belt structure in perovskite- spinel composite thin films. J. Am. Ceram. Soc., 2009, 92(1): 17-20.[24] CHEN A, BI Z, JIA Q, et al. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Materialia, 2013(61): 2783–2792. |