Journal of Inorganic Materials
Previous Articles Next Articles
LI Peng1, QIU Pengfei2, JIANG Binbin1, XIAO Jie2, SHI Xun2
Received:
2025-06-23
Revised:
2025-08-11
About author:
LI Peng (1995–), male, PhD. E-mail: pengli@whu.edu.cn
Supported by:
CLC Number:
LI Peng, QIU Pengfei, JIANG Binbin, XIAO Jie, SHI Xun. Thermomagnetic Performance of Polycrystalline TaSb2[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250264.
[1] PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66. [2] ZHANG J, LIU R, CHENG N, et al. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Advanced Materials, 2014, 26(23): 3848. [3] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554. [4] SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemical Society, 2011, 133(20): 7837. [5] XING T, SONG Q, QIU P, et al. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy & Environmental Science, 2021, 14(2): 995. [6] ZHANG Q, BAI S, CHEN L.Technologies and applications of thermoelectric devices: current status, challenges and prospects.Journal of Inorganic Materials, 2018, 34(3): 279. [7] QIU P, MAO T, HUANG Z, et al. High-efficiency and stable thermoelectric module based on liquid-like materials. Joule, 2019, 3(6): 1538. [8] GOLDSMID H J. Thermoelectric Refrigeration.Wembley: Plenum Press, 1964: 84-87. [9] ROWE D M.CRC Handbook of Thermoelectrics. Boca Raton: CRC Press LLC, 1995: 71-72. [10] YIM W·M, AMITH A.Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling.Solid-State Electronics, 1972, 15(10): 1141. [11] CUFF K F, HORST R B, WEAVER J L, et al. The thermomagnetic figure of merit and ettingshausen cooling in Bi-Sb Alloys. Applied Physics Letters, 1963, 2(8): 145-146. [12] HEREMANS J P, THRUSH C M, MORELLI D T.Geometrical magnetothermopower in n- and p-type InSb.Physical Review B, 2001, 65(3): 035209. [13] ALI M N, XIONG J, FLYNN S, et al. Large, non-saturating magnetoresistance in WTe2. Nature, 2014, 514(7521): 205. [14] CHEN S S, LI X, LV Y Y, et al. Electrical, magneto-transport and significant thermoelectric properties of Te-rich ZrTe5+δ polycrystals. Journal of Alloys and Compounds, 2018, 764: 540-544. [15] SHEKHAR C, NAYAK A K, SUN Y, et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Physics, 2015, 11(8): 645. [16] YANG X, BAI H, WANG Z, et al. Giant linear magneto-resistance in nonmagnetic PtBi2. Applied Physics Letters, 2016, 108(25): 252401. [17] XIANG J, HU S, LYU M, et al. Large transverse thermoelectric figure of merit in a topological Dirac semimetal. Science China Physics, Mechanics & Astronomy, 2019, 63(3): 237011. [18] WANG P, CHO C, TANG F, et al. Giant Nernst effect and field-enhanced transversal zNT in ZrTe5. Physical Review B, 2021, 103(4): 045203. [19] FU C, GUIN S N, SCAFFIDI T, et al. Largely suppressed magneto-thermal conductivity and enhanced magneto-thermoelectric properties in PtSn4. Research, 2020, 2020: 4643507. [20] CHEN Z, ZHANG X, REN J, et al. Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping. Nature Communications, 2021, 12: 3837. [21] WANG H, ZHOU Z, YING J, et al. Large magneto-transverse and longitudinal thermoelectric effects in the magnetic Weyl semimetal TbPtBi. Advanced Materials, 2023, 35(2): 2206941. [22] LI P, QIU P, XU Q, et al. Colossal Nernst power factor in topological semimetal NbSb2. Nature Communications, 2022, 13(1): 7612. [23] WATZMAN S J, MCCORMICK T M, SHEKHAR C,#magtechI#et al. Dirac dispersion generates unusually large Nernst effect in Weyl semimetals. Physical Review B, 2018, 97(16): 161404(R). [24] WU S, WANG X, MI X, et al. Large transverse thermoelectric power factor in topological semimetal NbAs2. Advanced Energy Materials, 2024, 14(29): 2400184. [25] HU H, FENG X, PAN Y, et al. Multipocket synergy towards high thermoelectric performance in topological semimetal TaAs2. Nature Communications, 2025, 16(1): 119. [26] PAN Y, HE B, HELM T, et al. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2. Nature Communications, 2022, 13: 3909. [27] LIU W, WANG Z, WANG J, et al. Weyl semimetal states generated extraordinary quasi-linear magnetoresistance and Nernst thermoelectric power factor in polycrystalline NbP. Advanced Functional Materials, 2022, 32(28): 2202143. [28] FU C, GUIN S N, WATZMAN S J, et al. Large Nernst power factor over a broad temperature range in polycrystalline Weyl semimetal NbP. Energy & Environmental Science, 2018, 11(10): 2813. [29] FENG T, WANG P, HAN Z, et al. Large transverse and longitudinal magneto-thermoelectric effect in polycrystalline nodal-line semimetal Mg3Bi2. Advanced Materials, 2022, 34(19): 2200931. [30] FENG T, WANG P, HAN Z, et al. Giant transverse thermoelectric effect induced by topological transition in polycrystalline Dirac semimetal Mg3Bi2. Energy & Environmental Science, 2023, 16(4): 1560. [31] LI P, QIU P, XIAO J, et al. A giant Nernst power factor and figure-of-merit in polycrystalline NbSb2 for Ettingshausen refrigeration. Energy & Environmental Science, 2023, 16(9): 3753. [32] LI Y, LI L, WANG J, et al. Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb2. Physical Review B, 2016, 94(12): 121115. [33] MAO J, ZHU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science, 2019, 365(6452): 495. [34] LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11(5): 422. [35] GUO L, LIU Y K, GAO G Y, et al. Extreme magnetoresistance and SdH oscillation in compensated semimetals of NbSb2 single crystals. Journal of Applied Physics, 2018, 123(15): 155103. [36] BEHNIA K, AUBIN H.Nernst effect in metals and superconductors: a review of concepts and experiments.Reports on Progress in Physics, 2016, 79(4): 046502. [37] HARVEY GOULD J T. Statistical and Thermal Physics: With Computer Applications. Princeton: Princeton University Press, 2010: 322. [38] DELVES R T.Thermomagnetic effects in semiconductors and semimetals.Reports on Progress in Physics, 1965, 28(1): 249. [39] KAGAN V D, RED'KO N A, RODIONOV N A, et al. Phonon drag thermopower in doped bismuth. Physics of the Solid State, 2004, 46(8): 1410. [40] KIMURA M, HE X, KATASE T, et al. Large phonon drag thermopower boosted by massive electrons and phonon leaking in LaAlO3/LaNiO3/LaAlO3 heterostructure. Nano Letters, 2021, 21(21): 9240. [41] HAN F, ANDREJEVIC N, NGUYEN T, et al. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal. Nature Communications, 2020, 11(1): 6167. [42] OCAñA R, ESQUINAZI P. Thermal conductivity tensor in YBa2Cu3O7-x: effects of a planar magnetic field. Physical Review B, 2002, 66(6): 064525. [43] ZHANG S, WANG X, BAI Q,et al. Measuring lattice thermal conductivity of Bi1-xSbx enabled by external magnetic field. Materials Today Physics, 2024, 45: 101460. |
[1] | CHEN Xiangjie, LI Ling, LEI Tianfu, WANG Jiajia, WANG Yaojin. Enhanced Piezoelectric Properties of (1-x)(0.8PZT-0.2PZN)-xBZT Ceramics via Phase Boundary and Domain Engineering [J]. Journal of Inorganic Materials, 2025, 40(6): 729-734. |
[2] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. |
[3] | ZHANG Zhimin, GE Min, LIN Han, SHI Jianlin. Novel Magnetoelectric Catalytic Nanoparticles: RNS Release and Antibacterial Efficiency [J]. Journal of Inorganic Materials, 2024, 39(10): 1114-1124. |
[4] | ZHAO Yawen, QU Fajin, WANG Yanyi, WANG Zhiwen, CHEN Chusheng. Preparation and Properties of Aluminum Silicate Fiber Supported PtTFPP-PDMS Flexible Oxygen Sensing Components [J]. Journal of Inorganic Materials, 2024, 39(10): 1084-1090. |
[5] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[6] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[7] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[8] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[9] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[10] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[11] | ZHANG Ruiyang, WANG Yi, OU Bowen, ZHOU Ying. α-Ni(OH)2 Surface Hydroxyls Synergize Ni3+ Sites for Catalytic Formaldehyde Oxidation [J]. Journal of Inorganic Materials, 2023, 38(10): 1216-1222. |
[12] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | YU Ruixian, WANG Guodong, WANG Shouzhi, HU Xiaobo, XU Xiangang, ZHANG Lei. Effect of High-temperature Annealing on AlN Crystal Grown by PVT Method [J]. Journal of Inorganic Materials, 2023, 38(3): 343-349. |
[15] | ZHANG Wenjun, ZHAO Xueying, LÜ Jiangwei, QU Youpeng. Progresses on Hollow Periodic Mesoporous Organosilicas: Preparation and Application in Tumor Therapy [J]. Journal of Inorganic Materials, 2022, 37(11): 1192-1202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||