Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 663-670.DOI: 10.15541/jim20220637
Special Issue: 【能源环境】热电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Bo1(), YU Jian1,2(
), LI Cuncheng1,3, NIE Xiaolei1, ZHU Wanting1, WEI Ping1, ZHAO Wenyu1(
), ZHANG Qingjie1
Received:
2022-10-28
Revised:
2022-12-15
Published:
2023-06-20
Online:
2022-12-28
Contact:
YU Jian, lecturer. E-mail: jianyujju@126.com;About author:
WANG Bo (1996-), male, Master candidate. E-mail: bowang@whut.edu.cn
Supported by:
CLC Number:
WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites[J]. Journal of Inorganic Materials, 2023, 38(6): 663-670.
Fig. 4 (a) Secondary electron image (SEI), (b, c) backscattered electron images (BEI) and (d) EPMA elemental mapping images of the samples after aging for 12 d
Fig. 7 Temperature dependence of (a) electrical conductivity and (b) Seebeck coefficient for forward (solid icon) and reverse (hollow icon) testing of Gd/BST gradient composites for different aging time with insets showing change of electrical conductivity and Seebeck coefficient with aging time at 300, 350 and 500 K
Fig. 8 Temperature dependence of (a) thermal conductivity, (b) carrier thermal conductivity, (c) lattice thermal conductivity, and (d) ZT for forward (solid icon) and reverse (hollow icon) testing of Gd/BST gradient composites with different aging time with insets showing changes of thermal conductivity, carrier thermal conductivity, lattice thermal conductivity, and ZT with aging time at 300, 350 and 500 K
Fig. 9 Cooling performance of the Gd/BST gradient composite device with different aging time under different forward currents ΔT: Difference of working temperatures; ΔTC: Difference of cooling temperatures Colorful figures are available on website
Sample | I = 1.5 A | I=2.0 A | I=2.5 A | I=3.0 A | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Iforward | Ireverse | Iforward | Ireverse | Iforward | Ireverse | Iforward | Ireverse | |||||||||
ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | |
t00 | 14.6 | 5.4 | 15.8 | 5.5 | 18.7 | 6.1 | 21.1 | 6.3 | 24.1 | 6.6 | 27.3 | 7.0 | 28.4 | 6.1 | 33.3 | 7.0 |
t04 | 15.6 | 5.4 | 16.6 | 5.7 | 20.1 | 6.3 | 22.2 | 6.2 | 24.6 | 6.8 | 28.3 | 6.7 | 28.8 | 6.7 | 34.9 | 6.5 |
t08 | 14.4 | 5.2 | 15.5 | 5.4 | 19.3 | 6.1 | 21.0 | 6.3 | 24.1 | 6.4 | 27.0 | 6.9 | 29.2 | 6.2 | 33.2 | 7.0 |
t12 | 15.3 | 5.4 | 15.9 | 5.6 | 19.1 | 6.2 | 21.2 | 6.2 | 23.2 | 6.5 | 26.5 | 6.5 | 27.0 | 6.3 | 31.6 | 6.6 |
Table 1 Cooling performance of Gd/BST gradient composite device with different ageing time/K
Sample | I = 1.5 A | I=2.0 A | I=2.5 A | I=3.0 A | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Iforward | Ireverse | Iforward | Ireverse | Iforward | Ireverse | Iforward | Ireverse | |||||||||
ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | ΔT | ΔTC | |
t00 | 14.6 | 5.4 | 15.8 | 5.5 | 18.7 | 6.1 | 21.1 | 6.3 | 24.1 | 6.6 | 27.3 | 7.0 | 28.4 | 6.1 | 33.3 | 7.0 |
t04 | 15.6 | 5.4 | 16.6 | 5.7 | 20.1 | 6.3 | 22.2 | 6.2 | 24.6 | 6.8 | 28.3 | 6.7 | 28.8 | 6.7 | 34.9 | 6.5 |
t08 | 14.4 | 5.2 | 15.5 | 5.4 | 19.3 | 6.1 | 21.0 | 6.3 | 24.1 | 6.4 | 27.0 | 6.9 | 29.2 | 6.2 | 33.2 | 7.0 |
t12 | 15.3 | 5.4 | 15.9 | 5.6 | 19.1 | 6.2 | 21.2 | 6.2 | 23.2 | 6.5 | 26.5 | 6.5 | 27.0 | 6.3 | 31.6 | 6.6 |
[1] |
HE W, ZHANG G, ZHANG X, et al. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1.
DOI URL |
[2] |
LYUBINA J. Magnetocaloric materials for energy efficient cooling. Journal of Physics D: Applied Physics, 2017, 50(5):053002.
DOI URL |
[3] |
PECHARSKY V K, GSCHNEIDNER K A. Advanced magnetocaloric materials: what does the future hold? International Journal of Refrigeration, 2006, 29(8):1239.
DOI URL |
[4] |
RAM N R, PRAKASH M, NARESH U, et al. Review on magnetocaloric effect and materials. Journal of Superconductivity and Novel Magnetism, 2018, 31(7): 1971.
DOI |
[5] |
YU J, Ma S, Xie X, et al. Unique surface structure resulting in the excellent long-term thermal stability of Fe4Sb12-based filled skutterudites. Journal of the European Ceramic Society, 2022, 42(3):1007.
DOI URL |
[6] | TRITT T M. Overview of various strategies and promising new bulk materials for potential thermoelectric applications. MRS Online Proceedings Library, 2002, 691(1):11. |
[7] |
ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics, 2015, 1(2):92.
DOI URL |
[8] |
TWAHA S, ZHU J, YAN Y, et al. A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews, 2016, 65: 698.
DOI URL |
[9] |
SAJID M, HASSAN I, RAHMAN A. An overview of cooling of thermoelectric devices. Renewable and Sustainable Energy Reviews, 2017, 78: 15.
DOI URL |
[10] |
KIM S I, LEE K H, MUN H, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348: 109.
DOI URL |
[11] |
SILVA D J, BORDALO B D, PEREIRA A M, et al. Solid state magnetic refrigerator. Applied Energy, 2012, 93: 570.
DOI URL |
[12] |
ROMERO GÓMEZ J, FERREIRO GARCIA R, DE MIGUEL CATOIRA A, et al. Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renewable and Sustainable Energy Reviews, 2013, 17: 74.
DOI URL |
[13] |
GUTFLEISCH O, WILLARD M A, BRÜCK E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Advanced Materials, 2011, 23(7):821.
DOI URL |
[14] |
DE VRIES W, VAN DER MEER T H. Application of Peltier thermal diodes in a magnetocaloric heat pump. Applied Thermal Engineering, 2017, 111: 377.
DOI URL |
[15] |
TOMC U, TUŠEK J, KITANOVSKI A, et al. A new magnetocaloric refrigeration principle with solid-state thermoelectric thermal diodes. Applied Thermal Engineering, 2013, 58(1):1.
DOI URL |
[16] |
MONFARED B. Simulation of solid-state magnetocaloric refrigeration systems with Peltier elements as thermal diodes. International Journal of Refrigeration, 2017, 74: 324.
DOI URL |
[17] |
ZHAO W, LIU Z, SUN Z, et al. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671):247.
DOI URL |
[18] |
ZHAO W, LIU Z, WEI P, et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 2017, 12(1):55.
DOI PMID |
[19] |
LAZARO F J, LOPEZ A, LARREA A, et al. Paramagnetic-superparamagnetic transition in molecular-sieve-supported antiferromagnetic particles. IEEE Transactions on Magnetics, 1998, 34(4):1030.
DOI URL |
[20] |
HE D, MU X, ZHOU H, et al. Effects of Fe3O4 magnetic nanoparticles on the thermoelectric properties of heavy-fermion YbAl3 materials. Journal of Electronic Materials, 2018, 47(6):3338.
DOI URL |
[21] | SUTJAHJA I M, AKBAR T, NUGROHO A. Lanthanide contraction effect in magnetic thermoelectric materials of rare earth-doped Bi1.5Pb0.5Ca2Co2O8. AIP Conference Proceedings, 2010: 71. |
[22] |
WEI P, KE B, XING L, et al. Atomic-resolution interfacial structures and diffusion kinetics in Gd/Bi0.5Sb1.5Te3 magnetocaloric/thermoelectric composites. Materials Characterization, 2020, 163: 110240.
DOI URL |
[23] | 柯波.p型碲化铋基热电/磁卡复合制冷材料异质界面与性能研究. 武汉: 武汉理工大学硕士学位论文, 2020. |
[24] | DENG R, SU X, HAO S, et al. High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. Energy & Environmental Science, 2018, 11(6):1520. |
[25] |
KIM H S, GIBBS Z M, TANG Y, et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015, 3(4):041506.
DOI URL |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | TAN Xiao-Fang, DUAN Si-Chen, WANG Hong-Xiang, WU Qing-Song, LI Miao-Miao, LIU Guo-Qiang, XU Jing-Tao, TAN Xiao-Jian, SHAO He-Zhu, JIANG Jun. Multi-doping in SnTe: Improvement of Thermoelectric Performance due to Lower Thermal Conductivity and Enhanced Power Factor [J]. Journal of Inorganic Materials, 2019, 34(3): 335-340. |
[3] | HU Hui-Shan, YANG Jun-You, XIN Jin-Wu, LI Si-Hui, JIANG Qing-Hui. High Thermoelectric Performance of SnTe from the Disproportionation of SnO [J]. Journal of Inorganic Materials, 2019, 34(3): 315-320. |
[4] | YAO Zheng, QIU Peng-Fei, LI Xiao-Ya, CHEN Li-Dong. Investigation on Quick Fabrication of n-type Filled Skutterudites [J]. Journal of Inorganic Materials, 2016, 31(12): 1375-1382. |
[5] | QI De-Kui, YAN Yong-Gao, LI Han, TANG Xin-Feng. Effects of Rapid Solidification Method on Thermoelectric and Mechanical Properties of β-Zn4+xSb3 Materials [J]. Journal of Inorganic Materials, 2010, 25(6): 603-609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||