Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (12): 1344-1350.DOI: 10.15541/jim20220224
Special Issue: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Jing1(), XU Shoudong1(
), LU Zhonghua1, ZHAO Zhuangzhuang1, CHEN Liang2, ZHANG Ding2, GUO Chunli3
Received:
2022-04-16
Revised:
2022-05-26
Published:
2022-12-20
Online:
2022-06-16
Contact:
XU Shoudong, associate professor. E-mail: xushoudong@tyut.edu.cnAbout author:
WANG Jing (1994-), female, Master candidate. E-mail: 513570705@qq.com
Supported by:
CLC Number:
WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350.
Fig. 3 XRD patterns of (a) ZIF-67, TA-Co and H-Co/C, (b) H-CoSe2/C and CoSe2/C, (c) Raman spectra of H-CoSe2/C and CoSe2/C, (d) C1s, (e) Co2p, and (f) Se3d XPS spectra of H-CoSe2/C
Fig. 6 (a) CV curves at different scan rates, (b) corresponding lgi versus lgv plots at each redox peak (i: peak current, v: scan rate), (c) histogram of pseudo capacitive contribution at different scan rates, and (d) capacitive contribution at scan rate of 1.5 V·s-1 of H-CoSe2/C electrode Colorful figures are available on website
Fig. 7 (a) Schematic diagram of the working mechanism, (b) charge-discharge curves and (c) cycle performance at 500 mA·g-1 of Na0.44MnO2/H-CoSe2/C full cell Colorful figures are available on website
Fig. S4 (a) Charge-discharge curves of H-CoSe2/C electrode at 50 mA·g-1; (b) Rate performances of H-CoSe2/C and CoSe2/C; (c) Cycle performance of H-CoSe2/C and CoSe2/C at 500 mA·g-1
Fig. S5 EIS spectra of H-CoSe2/C and CoSe2/C after (a) 1 cycle, (b) 120 cycles, and (c) 350 cycles and (d) corresponding histogram of R2 with inset showing equivalent circuit model
[1] |
USISKIN R, LU Y X, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries. Nature Reviews Materials, 2021, 6: 1020-1035.
DOI URL |
[2] |
PERVEEN T, SIDDIQ M, SHAHZAD N, et al. Prospects in anode materials for sodium ion batteries-a review. Renewable and Sustainable Energy Reviews, 2020, 119: 109549.
DOI URL |
[3] |
FANG L, BAHLAWANE N, SUN W, et al. Conversion-alloying anode materials for sodium ion batteries. Small, 2021, 17(37): 2101137.
DOI URL |
[4] |
HU Z, LIU Q N, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium- ion batteries. Advanced Materials, 2017, 29(48): 1700606.
DOI URL |
[5] |
LUO M H, YU H X, HU F Y, et al. Metal selenides for high performance sodium ion batteries. Chemical Engineering Journal, 2020, 380: 122557.
DOI URL |
[6] |
WU C, DOU S X, YU Y, et al. The state and challenges of anode materials based on conversion reactions for sodium storage. Small, 2018, 14(22): 1703671.
DOI URL |
[7] |
ZHANG K, PARK M H, ZHOU L M, et al. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Advanced Functional Materials, 2016, 26(37): 6728-6735.
DOI URL |
[8] |
MA X Q, ZOU L, ZHAO W X, et al. Tailoring hollow microflower-shaped CoSe2anodes in sodium ion batteries with high cycling stability. Chemical Communications, 2018, 54: 10507-10510.
DOI URL |
[9] |
FANG Y J, YU X Y, LOU X W, et al. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high- performance sodium-ion batteries. Advanced Materials, 2018, 30(21): 1706668.
DOI URL |
[10] |
WANG B, MIAO X W, DONG H L, et al. In situ construction of active interfaces towards improved high-rate performance of CoSe2. Journal of Materials Chemistry A, 2021, 9(25): 14582-14592.
DOI URL |
[11] |
XU X, YANG T, ZHANG Q, et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen- doped carbon tubes. Chemical Engineering Journal, 2020, 390: 124493.
DOI URL |
[12] |
FU Y, WEI Q, ZHANG G, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Advanced Energy Materials, 2018, 8(26): 1801445.
DOI URL |
[13] |
YANG J, GAO H C, MEN S, et al. CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li-and Na-ion batteries. Advanced Science, 2018, 5(12): 1800763.
DOI URL |
[14] |
XU X, LIU J, LIU J, et al. A general MOF-derived selenidation strategy for in-situ carbon-encapsulated metal selenides as high- rate anodes for Na-ion batteries. Advanced Functional Materials, 2018, 28(16): 1707573.
DOI URL |
[15] |
HU H, ZHANG J T, GUAN B Y, et al. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angewandte Chemie International Edition, 2016, 55(33): 9514-9518.
DOI URL |
[16] |
TABASSUM H, ZOU R, MAHMOOD A, et al. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium- ion battery anodes. Advanced Materials, 2018, 30(8): 1705441.
DOI URL |
[17] | LIU T Z, LI Y P, HOU S, et al. Building hierarchical microcubes composed of one-dimensional CoSe2 @nitrogen-doped carbon for superior sodium ion batteries. Chemistry, 2020, 26(60): 13716-13724. |
[18] | ZHANG Y F, PAN A Q, DING L, et al. Nitrogen-doped yolk-shell structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Applied Materials & Interfaces, 2017, 9(4): 3624-3633. |
[19] |
HUANG Y, FANG Y J, LU X F, et al. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angewandte Chemie International Edition, 2020, 59(45): 19914-19918.
DOI URL |
[20] | PAN Y L, CHENG X D, GAO M Y, et al. Cagelike CoSe2@N- doped carbon aerogels with pseudocapacitive properties as advanced materials for sodium-ion batteries with excellent rate performance and cyclic stability. ACS Applied Materials & Interfaces, 2020, 12(30): 33621-33630. |
[21] |
TANG Y, ZHAO Z, HAO X, et al. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. Journal of Materials Chemistry A, 2017, 5(26): 13591-13600.
DOI URL |
[22] |
TABASSUM H, ZHI C, HUSSAIN T, et al. Encapsulating trogtalite CoSe2 nanobuds into BCN nanotubes as high storage capacity sodium ion battery anodes. Advanced Energy Materials, 2019, 9(39): 1901778.
DOI URL |
[23] |
XU S D, ZHUANG Q C, TIAN L L, et al. Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies. The Journal of Physical Chemistry C, 2011, 115(18): 9210-9219.
DOI URL |
[24] |
SUN X P, ZENG S Y, MAN R X, et al. Yolk-shell structured CoSe2/C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries. Nanoscale, 2021, 13(23): 10385-10392.
DOI URL |
[25] |
AGARWAL R R. Phase changes and diffusivity in the carbon- lithium electrode. Journal of Power Sources, 1989, 25(2): 151-158.
DOI URL |
[26] |
ZHAO Z Z, HUANG X B, SHAO Y F, et al. Surface modification of Na0.44MnO2 via a nonaqueous solution-assisted coating for ultra- stable and high-rate sodium-ion batteries. Chemical Engineering Journal Advances, 2022, 10: 100292.
DOI URL |
[1] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
[2] | HONG Jiahui, MA Ran, WU Yunchao, WEN Tao, AI Yuejie. CoNx/g-C3N4 Nanomaterials Preparation by MOFs Self-sacrificing Template Method for Efficient Photocatalytic Reduction of U(VI) [J]. Journal of Inorganic Materials, 2022, 37(7): 741-749. |
[3] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[4] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[5] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[6] | ZHAI Wanru,WANG Jiahui,WANG Maohuai,DU Xuemei,WEI Shuxian. Adsorption and Separation of CO2/N2 in Metal Organic Frameworks: a Theoretical Investigation [J]. Journal of Inorganic Materials, 2020, 35(6): 697-702. |
[7] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[8] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[9] | LI Guodong, JI Guoxun, SUN Xinli, DU Wei, LIU Wei, WANG Shuao. Layered Metal Organic Framework for Effective Removal of 137Cs from Aqueous Solution [J]. Journal of Inorganic Materials, 2020, 35(3): 367-372. |
[10] | ZHENG Shiyou, DONG Fei, PANG Yuepeng, HAN Pan, YANG Junhe. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery [J]. Journal of Inorganic Materials, 2020, 35(12): 1295-1306. |
[11] | GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. |
[12] | Yi TAN, Kai WANG. Silicon-based Anode Materials Applied in High Specific Energy Lithium-ion Batteries: a Review [J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. |
[13] | Xiao-Jing FENG, Gong-Kai WANG, Xiao-Ran WANG, Jun HE, Xin WANG, Hui-Fen PENG. Electrochemical Property of Cr 3+ Doped LiSn2(PO4)3 Anode Material [J]. Journal of Inorganic Materials, 2019, 34(4): 358-364. |
[14] | Yong LI, Wei-Xin HE, Xin-Yue ZHENG, Sheng-Lan YU, Hai-Tong LI, Hong-Yi LI, Rong ZHANG, Yu WANG. Prussian Blue Cathode Materials for Aqueous Sodium-ion Batteries:Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2019, 34(4): 365-372. |
[15] | HU Xi, LIU Hong-Bo, XIA Xiao-Hong, GU Zhi-Qiang. Polyaniline-carbon Pillared Graphene Composite: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2019, 34(2): 145-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||