 
 Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (12): 1344-1350.DOI: 10.15541/jim20220224
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													WANG Jing1( ), XU Shoudong1(
), XU Shoudong1( ), LU Zhonghua1, ZHAO Zhuangzhuang1, CHEN Liang2, ZHANG Ding2, GUO Chunli3
), LU Zhonghua1, ZHAO Zhuangzhuang1, CHEN Liang2, ZHANG Ding2, GUO Chunli3
												  
						
						
						
					
				
Received:2022-04-16
															
							
																	Revised:2022-05-26
															
							
															
							
																	Published:2022-12-20
															
							
																	Online:2022-06-16
															
						Contact:
								XU Shoudong, associate professor. E-mail: xushoudong@tyut.edu.cnAbout author:WANG Jing (1994-), female, Master candidate. E-mail: 513570705@qq.com				
													Supported by:CLC Number:
WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350.
 
																													Fig. 3 XRD patterns of (a) ZIF-67, TA-Co and H-Co/C, (b) H-CoSe2/C and CoSe2/C, (c) Raman spectra of H-CoSe2/C and CoSe2/C, (d) C1s, (e) Co2p, and (f) Se3d XPS spectra of H-CoSe2/C
 
																													Fig. 6 (a) CV curves at different scan rates, (b) corresponding lgi versus lgv plots at each redox peak (i: peak current, v: scan rate), (c) histogram of pseudo capacitive contribution at different scan rates, and (d) capacitive contribution at scan rate of 1.5 V·s-1 of H-CoSe2/C electrode Colorful figures are available on website
 
																													Fig. 7 (a) Schematic diagram of the working mechanism, (b) charge-discharge curves and (c) cycle performance at 500 mA·g-1 of Na0.44MnO2/H-CoSe2/C full cell Colorful figures are available on website
 
																													Fig. S4 (a) Charge-discharge curves of H-CoSe2/C electrode at 50 mA·g-1; (b) Rate performances of H-CoSe2/C and CoSe2/C; (c) Cycle performance of H-CoSe2/C and CoSe2/C at 500 mA·g-1
 
																													Fig. S5 EIS spectra of H-CoSe2/C and CoSe2/C after (a) 1 cycle, (b) 120 cycles, and (c) 350 cycles and (d) corresponding histogram of R2 with inset showing equivalent circuit model
| [1] | USISKIN R, LU Y X, POPOVIC J, et al.  Fundamentals, status and promise of sodium-based batteries. Nature Reviews Materials, 2021, 6: 1020-1035. DOI URL | 
| [2] | PERVEEN T, SIDDIQ M, SHAHZAD N, et al.  Prospects in anode materials for sodium ion batteries-a review. Renewable and Sustainable Energy Reviews, 2020, 119: 109549. DOI URL | 
| [3] | FANG L, BAHLAWANE N, SUN W, et al.  Conversion-alloying anode materials for sodium ion batteries. Small, 2021, 17(37): 2101137. DOI URL | 
| [4] | HU Z, LIU Q N, CHOU S L, et al.  Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium- ion batteries. Advanced Materials, 2017, 29(48): 1700606. DOI URL | 
| [5] | LUO M H, YU H X, HU F Y, et al.  Metal selenides for high performance sodium ion batteries. Chemical Engineering Journal, 2020, 380: 122557. DOI URL | 
| [6] | WU C, DOU S X, YU Y, et al. The state and challenges of anode materials based on conversion reactions for sodium storage. Small, 2018, 14(22): 1703671. DOI URL | 
| [7] | ZHANG K, PARK M H, ZHOU L M, et al.  Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Advanced Functional Materials, 2016, 26(37): 6728-6735. DOI URL | 
| [8] | MA X Q, ZOU L, ZHAO W X, et al.  Tailoring hollow microflower-shaped CoSe2anodes in sodium ion batteries with high cycling stability. Chemical Communications, 2018, 54: 10507-10510. DOI URL | 
| [9] | FANG Y J, YU X Y, LOU X W, et al.  Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high- performance sodium-ion batteries. Advanced Materials, 2018, 30(21): 1706668. DOI URL | 
| [10] | WANG B, MIAO X W, DONG H L, et al.  In situ construction of active interfaces towards improved high-rate performance of CoSe2. Journal of Materials Chemistry A, 2021, 9(25): 14582-14592. DOI URL | 
| [11] | XU X, YANG T, ZHANG Q, et al.  Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen- doped carbon tubes. Chemical Engineering Journal, 2020, 390: 124493. DOI URL | 
| [12] | FU Y, WEI Q, ZHANG G, et al.  High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Advanced Energy Materials, 2018, 8(26): 1801445. DOI URL | 
| [13] | YANG J, GAO H C, MEN S, et al.  CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li-and Na-ion batteries. Advanced Science, 2018, 5(12): 1800763. DOI URL | 
| [14] | XU X, LIU J, LIU J, et al.  A general MOF-derived selenidation strategy for in-situ carbon-encapsulated metal selenides as high- rate anodes for Na-ion batteries. Advanced Functional Materials, 2018, 28(16): 1707573. DOI URL | 
| [15] | HU H, ZHANG J T, GUAN B Y, et al.  Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angewandte Chemie International Edition, 2016, 55(33): 9514-9518. DOI URL | 
| [16] | TABASSUM H, ZOU R, MAHMOOD A, et al. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium- ion battery anodes. Advanced Materials, 2018, 30(8): 1705441. DOI URL | 
| [17] | LIU T Z, LI Y P, HOU S, et al. Building hierarchical microcubes composed of one-dimensional CoSe2 @nitrogen-doped carbon for superior sodium ion batteries. Chemistry, 2020, 26(60): 13716-13724. | 
| [18] | ZHANG Y F, PAN A Q, DING L, et al. Nitrogen-doped yolk-shell structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Applied Materials & Interfaces, 2017, 9(4): 3624-3633. | 
| [19] | HUANG Y, FANG Y J, LU X F, et al.  Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angewandte Chemie International Edition, 2020, 59(45): 19914-19918. DOI URL | 
| [20] | PAN Y L, CHENG X D, GAO M Y, et al. Cagelike CoSe2@N- doped carbon aerogels with pseudocapacitive properties as advanced materials for sodium-ion batteries with excellent rate performance and cyclic stability. ACS Applied Materials & Interfaces, 2020, 12(30): 33621-33630. | 
| [21] | TANG Y, ZHAO Z, HAO X, et al.  Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. Journal of Materials Chemistry A, 2017, 5(26): 13591-13600. DOI URL | 
| [22] | TABASSUM H, ZHI C, HUSSAIN T, et al.  Encapsulating trogtalite CoSe2 nanobuds into BCN nanotubes as high storage capacity sodium ion battery anodes. Advanced Energy Materials, 2019, 9(39): 1901778. DOI URL | 
| [23] | XU S D, ZHUANG Q C, TIAN L L, et al.  Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies. The Journal of Physical Chemistry C, 2011, 115(18): 9210-9219. DOI URL | 
| [24] | SUN X P, ZENG S Y, MAN R X, et al.  Yolk-shell structured CoSe2/C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries. Nanoscale, 2021, 13(23): 10385-10392. DOI URL | 
| [25] | AGARWAL R R. Phase changes and diffusivity in the carbon- lithium electrode. Journal of Power Sources, 1989, 25(2): 151-158. DOI URL | 
| [26] | ZHAO Z Z, HUANG X B, SHAO Y F, et al.  Surface modification of Na0.44MnO2 via a nonaqueous solution-assisted coating for ultra- stable and high-rate sodium-ion batteries. Chemical Engineering Journal Advances, 2022, 10: 100292. DOI URL | 
| [1] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. | 
| [2] | WAN Junchi, DU Lulu, ZHANG Yongshang, LI Lin, LIU Jiande, ZHANG Linsen. Structural Evolution and Electrochemical Performance of Na4FexP4O12+x/C Cathode Materials for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(5): 497-503. | 
| [3] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. | 
| [4] | YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329-336. | 
| [5] | ZHU Zhijie, SHEN Mingyuan, WU Tao, LI Wencui. Inhibition of P2-O2 Phase Transition for P2-Na2/3Ni1/3Mn2/3O2 as Cathode of Sodium-ion Battery via Synergetic Substitution of Cu and Mg [J]. Journal of Inorganic Materials, 2025, 40(2): 184-195. | 
| [6] | ZHOU Jingyu, LI Xingyu, ZHAO Xiaolin, WANG Youwei, SONG Erhong, LIU Jianjun. Rate and Cycling Performance of Ti and Cu Doped β-NaMnO2 as Cathode of Sodium-ion Battery [J]. Journal of Inorganic Materials, 2024, 39(12): 1404-1412. | 
| [7] | XIAO Wenyan, FU Yan, YANG Shubin, ZHU Jie, CHENG Zhaoyang, WEN Xiaoxu, TANG Jiafan, YU Liang, ZHANG Qian. Seawater Electrolysis Performance of Self-supported Amorphous Ce-FeHPi/NF Electrode [J]. Journal of Inorganic Materials, 2024, 39(12): 1348-1356. | 
| [8] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. | 
| [9] | HONG Jiahui, MA Ran, WU Yunchao, WEN Tao, AI Yuejie. CoNx/g-C3N4 Nanomaterials Preparation by MOFs Self-sacrificing Template Method for Efficient Photocatalytic Reduction of U(VI) [J]. Journal of Inorganic Materials, 2022, 37(7): 741-749. | 
| [10] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. | 
| [11] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. | 
| [12] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. | 
| [13] | ZHAI Wanru,WANG Jiahui,WANG Maohuai,DU Xuemei,WEI Shuxian. Adsorption and Separation of CO2/N2 in Metal Organic Frameworks: a Theoretical Investigation [J]. Journal of Inorganic Materials, 2020, 35(6): 697-702. | 
| [14] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. | 
| [15] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||