Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (4): 423-430.DOI: 10.15541/jim20190195
Special Issue: 2020年能源材料论文精选(三) :太阳能电池、热电材料及其他
• RESEARCH PAPER • Previous Articles Next Articles
ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming()
Received:
2019-05-05
Revised:
2019-07-26
Published:
2020-04-20
Online:
2019-09-04
Supported by:
CLC Number:
ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery[J]. Journal of Inorganic Materials, 2020, 35(4): 423-430.
Fig. 6 Electrochemical performances of commercial ZnO and ZnO NRs electrodes (a) CV curves at a scan rate of 10 mV·s-1; (b) Tafel plots; (c) Nyquist plots
Electrode | Tafel plots | EIS | ||
---|---|---|---|---|
Ecorr/V (vs. Hg/HgO) | Icorr/(mA·cm-2) | RS/Ω | RCT/Ω | |
Commercial ZnO | -1.327 | 5.01×10-3 | 1.4 | 7.9 |
ZnO NRs | -1.311 | 3.01×10-3 | 0.9 | 3.0 |
Table 1 Parameters of Tafel plots and EIS for commercial ZnO and ZnO NRs
Electrode | Tafel plots | EIS | ||
---|---|---|---|---|
Ecorr/V (vs. Hg/HgO) | Icorr/(mA·cm-2) | RS/Ω | RCT/Ω | |
Commercial ZnO | -1.327 | 5.01×10-3 | 1.4 | 7.9 |
ZnO NRs | -1.311 | 3.01×10-3 | 0.9 | 3.0 |
Fig. 7 Electrochemical performances of the Ni(OH)2//commercial ZnO and Ni(OH)2//ZnO NRs (a-d) Charge-discharge curves at different current densities; (e) Rate capabilities; (f) Cycling performances
Sample | Current density | Capacity retention/% |
---|---|---|
ZnO@Bi/C[ | 1C-5C | ~52.5 |
ZnO@RGO[ | 1C-5C | ~58.3 |
SnO2@ZnO[ | 1C-8C | ~24.0 |
ZnO-N2@C[ | 1C-10C | ~56.4 |
This work | 1.5C-15C | ~59.1 |
Table 2 Rate performances of different ZnO negative materials
Sample | Current density | Capacity retention/% |
---|---|---|
ZnO@Bi/C[ | 1C-5C | ~52.5 |
ZnO@RGO[ | 1C-5C | ~58.3 |
SnO2@ZnO[ | 1C-8C | ~24.0 |
ZnO-N2@C[ | 1C-10C | ~56.4 |
This work | 1.5C-15C | ~59.1 |
Sample | Capacity retention |
---|---|
Spherical ZnO[ | 0.2C, 100 cycles, ~64% |
ZnO/PPy16.8%[ | 1C, 100 cycles, ~74% |
12wt% TPP-modified ZnO[ | 1C, 50 cycles, ~89% |
This work | 1.5C, 100 cycles, ~92% |
Table 3 Cycling performances of different ZnO negative materials
Sample | Capacity retention |
---|---|
Spherical ZnO[ | 0.2C, 100 cycles, ~64% |
ZnO/PPy16.8%[ | 1C, 100 cycles, ~74% |
12wt% TPP-modified ZnO[ | 1C, 50 cycles, ~89% |
This work | 1.5C, 100 cycles, ~92% |
[1] | CHEN L N, YAN M Y, MEI Z W , et al. Research progress and prospect of aqueous zinc ion battery. Journal of Inorganic Materials, 2017,32(3):225-234. |
[2] | WEI X J, LI Y B, GAO S Y . Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. Journal of Materials Chemistry A, 2017,5(1):181-188. |
[3] | WEI X J, ZOU H L, GAO S Y . Chemical crosslinking engineered nitrogen-doped carbon aerogels from polyaniline-boric acid- polyvinyl alcohol gels for high-performance electrochemical capacitors. Carbon, 2017,123:471-480. |
[4] | WEI X J, WEI J S, LI Y B , et al. Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. Journal of Power Sources, 2019,414:13-23. |
[5] | MA G Q, JIANG Z M, CHEN H C , et al. Research process on novel electrolyte of lithium-ion battery based on lithium salts. Journal of Inorganic Materials, 2018,33(7):699-710. |
[6] | TAN Y, XUE B . Research progress on lithium titanate as anode material in lithium-ion battery. Journal of Inorganic Materials, 2018,33(5):475-482. |
[7] | OUYANG Y, GUO Y P, LI D , et al. Single additive with dual functional- ions for stabilizing lithium anodes. ACS Applied Materials & Interfaces, 2019,11(12):11360-11368. |
[8] | LIU J P, GUAN C, ZHOU C , et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Advanced Materials, 2016,28(39):8732-8739. |
[9] | HUANG J H, YANG Z H, YANG B , et al. Ultrasound assisted polymerization for synthesis of ZnO/polypyrrole composites for zinc/nickel rechargeable battery. Journal of Power Sources, 2014,271:143-151. |
[10] | WEN R J, YANG Z H, FAN X M , et al. Electrochemical performances of ZnO with different morphology as anodic materials for Ni/Zn secondary batteries. Electrochimica Acta, 2012,83:376-382. |
[11] | LI J, ZHAO T H, SHANGGUAN E B , et al. Enhancing the rate and cycling performance of spherical ZnO anode material for advanced zinc-nickel secondary batteries by combined in-situ doping and coating with carbon. Electrochimica Acta, 2017,236:180-189. |
[12] | ZHAO Z J, YANG K, PENG K , et al. Synergistic effect of ZnO@Bi/C sphere for rechargeable Zn-Ni battery with high specific capacity. Journal of Power Sources, 2019,410:10-14. |
[13] | YANG H, YANG Z H, WEN X , et al. The in-situ growth of zinc-aluminum layered double hydroxides on graphene and its application as anode active materials for Zn-Ni secondary battery. Electrochimica Acta, 2017,252:507-515. |
[14] | LAI S B, JAMESH M I, WU X C , et al. A promising energy storage system: rechargeable Ni-Zn battery. Rare Metals, 2017,36(5):381-396. |
[15] | XIE Q S, LIU P F, ZENG D Q , et al. Dual electrostatic assembly of graphene encapsulated nanosheet-assembled ZnO-Mn-C hollow microspheres as a lithium ion battery anode. Advanced Functional Materials, 2018,28(19):1707433. |
[16] | HUANG G Y, YANG Y, SUN H Y , et al. Defective ZnCo2O4 with Zn vacancies: synthesis, property and electrochemical application. Journal of Alloys and Compounds, 2017,724:1149-1156. |
[17] | SHEN X Y, MU D B, CHEN S , et al. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Applied Materials & Interfaces, 2013,5(8):3118-3125. |
[18] | KIM J, IM Y, PARK K S , et al. Improved cell performances in Ni/Zn redox batteries fabricated by ZnO materials with various morphologies synthesized using amine chelates. Journal of Industrial and Engineering Chemistry, 2017,56:463-471. |
[19] | WU P Y, PIKE J, ZHANG F , et al. Low-temperature synthesis of zinc oxide nanoparticles. International Journal of Applied Ceramic Technology, 2006,3(4):272-278. |
[20] | NOEI H, QIU H S, WANG Y M , et al. The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Physical Chemistry Chemical Physics, 2008,10(47):7092-7097. |
[21] | N’KONOU K, HARIS M, LARE Y , et al. Effect of barium doping on the physical properties of zinc oxide nanoparticles elaborated via sonochemical synthesis method. Pramana-Journal of Physics, 2016,87(1):4. |
[22] | KIM J G, LEE S H, KIM Y , et al. Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties. ACS Applied Materials & Interfaces, 2013,5(21):11321-11328. |
[23] | LIU J P, LI Y Y, DING R M , et al. Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. Journal of Physical Chemistry C, 2009,113(13):5336-5339. |
[24] | KAMBLE A, SINHA B, CHUNG K , et al. Facile linker free growth of CdS nanoshell on 1-D ZnO: solar cell application. Electronic Materials Letters, 2015,11(2):171-179. |
[25] | ZENG Y X, LAI Z Z, HAN Y , et al. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Advanced Materials, 2018,30(33):1802396. |
[26] | NANDI P, DAS D . Photocatalytic degradation of rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects. Applied Surface Science, 2019,465:546-556. |
[27] | XIA T, WALLENMEYER P, ANDERSON A , et al. Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance. RSC Advances, 2014,4(78):41654-41658. |
[28] | DENG S J, ZHANG Y, XIE D , et al. Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy, 2019,58:355-364. |
[29] | CARBONE M . Zn defective ZnCo2O4 nanorods as high capacity anode for lithium ion batteries. Journal of Electroanalytical Chemistry, 2018,815:151-157. |
[30] | YAN X Y, CHEN Z X, WANG Y , et al. In-situ growth of ZnO nanoplates on graphene for the application of high rate flexible quasi-solid-state Ni-Zn secondary battery. Journal of Power Sources, 2018,407:137-146. |
[31] | SUN L S, YI Z, LIN J , et al. Fast and energy efficient synthesis of ZnO@RGO and its application in Ni-Zn secondary battery. Journal of Physical Chemistry C, 2016,120(23):12337-12343. |
[32] | GUO W C, TIAN Z L, YANG C , et al. ZIF-8 derived nano-SnO2@ZnO as anode for Zn/Ni secondary batteries. Electrochemistry Communications, 2017,82:159-162. |
[33] | ZHAO T H, SHANGGUAN E B, LI Y , et al. Facile synthesis of high tap density ZnO microspheres as advanced anode material for alkaline nickel-zinc rechargeable batteries. Electrochimica Acta, 2015,182:173-182. |
[34] | HUANG J H, YANG Z H, WANG T T . Evaluation of tetraphenylporphyrin modified ZnO as anode material for Ni-Zn rechargeable battery. Electrochimica Acta, 2014,123:278-284. |
[1] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[2] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
[3] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[4] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[5] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[6] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[7] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[8] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[9] | ZHENG Shiyou, DONG Fei, PANG Yuepeng, HAN Pan, YANG Junhe. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery [J]. Journal of Inorganic Materials, 2020, 35(12): 1295-1306. |
[10] | GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. |
[11] | LI Xue-Lin, ZHU Jian-Feng, JIAO Yu-Hong, HUANG Jia-Xuan, ZHAO Qian-Nan. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2Tx@MnO2 Composites [J]. Journal of Inorganic Materials, 2020, 35(1): 119-125. |
[12] | SUN Xiao-Lu,SONG Xiao-Fei,LIU Yan-Hua,WU Yue,CAI Yi-Bing,ZHAO Hong-Mei. Electrospun FeMnO3 Nanofibrous Mats: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2019, 34(7): 709-714. |
[13] | Yi TAN, Kai WANG. Silicon-based Anode Materials Applied in High Specific Energy Lithium-ion Batteries: a Review [J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. |
[14] | Xiao-Jing FENG, Gong-Kai WANG, Xiao-Ran WANG, Jun HE, Xin WANG, Hui-Fen PENG. Electrochemical Property of Cr 3+ Doped LiSn2(PO4)3 Anode Material [J]. Journal of Inorganic Materials, 2019, 34(4): 358-364. |
[15] | HU Xi, LIU Hong-Bo, XIA Xiao-Hong, GU Zhi-Qiang. Polyaniline-carbon Pillared Graphene Composite: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2019, 34(2): 145-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||