Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (11): 1345-1354.DOI: 10.15541/jim20220729
Special Issue: 【生物材料】骨骼与齿类组织修复(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Yan1,2,3(), ZHANG Yufan1,2,3, WANG Ximan1,2,3, LI Ting1,2,3, MA Wenting1,2,3, YANG Fuwei1,2,3(
), CHEN Liang1,2,3, ZHAO Dongyue1,2,3, YAN Xiaoqin1,2,3
Received:
2022-11-03
Revised:
2023-06-01
Published:
2023-06-02
Online:
2023-06-02
Contact:
YANG Fuwei, male, professor. E-mail: yangfuwei@nwu.edu.cnAbout author:
LIU Yan (1977-), female, professor. E-mail: liuyan@nwu.edu.cn
Supported by:
CLC Number:
LIU Yan, ZHANG Yufan, WANG Ximan, LI Ting, MA Wenting, YANG Fuwei, CHEN Liang, ZHAO Dongyue, YAN Xiaoqin. Consolidation of Fragile Weathered Bone Relics Using Hydroxyapatite Material as Consolidant[J]. Journal of Inorganic Materials, 2023, 38(11): 1345-1354.
Group | Mass ratio | |||||
---|---|---|---|---|---|---|
1 : 1 | 1 : 3 | 1 : 4 | 1 : 5 | 1 : 6 | 1 : 7 | |
Brushing | 1 | 2 | 3 | 4 | 5 | 6 |
Soaking | 7 | 8 | 9 | 10 | 11 | 12 |
Dripping | 13 | 14 | 15 | 16 | 17 | 18 |
Table 1 Experimental groups of different mass ratios
Group | Mass ratio | |||||
---|---|---|---|---|---|---|
1 : 1 | 1 : 3 | 1 : 4 | 1 : 5 | 1 : 6 | 1 : 7 | |
Brushing | 1 | 2 | 3 | 4 | 5 | 6 |
Soaking | 7 | 8 | 9 | 10 | 11 | 12 |
Dripping | 13 | 14 | 15 | 16 | 17 | 18 |
Fig. 4 Effects of consolidation way and consolidant ratio on the bone weight increment (The rectangle is Interquartile Range (IQR), which is used to mark data outliers) (a) Consolidation way; (b) Consolidant ratio
Fig. 9 Morphologies of fragile bone samples after consolidation treatments with mass ratios of calcium oxide to calcium hydrogen phosphate at 1 : 1 (a), 1 : 3 (b), 1 : 4 (c), 1 : 5 (d), 1 : 6 (e) and 1 : 7 (f), respectively
Fig. 10 EDS analysis results of fragile bone samples before and after consolidation treatment (a, d) Ca; (b, e) P; (c, f) C, corresponding to Fig. 8 and Fig. 9(b)
Element | Weight ratio before consolidation/% | Weight ratio after consolidation/% |
---|---|---|
C | 0 | 5.62 |
O | 56.93 | 56.32 |
Na | 9.57 | 2.56 |
Mg | 0.91 | 1.12 |
P | 12.04 | 13.23 |
Ca | 20.55 | 21.15 |
Total | 100.00 | 100.00 |
Table. 2 EDS analysis results of frgile bone before and after consolidation treatment
Element | Weight ratio before consolidation/% | Weight ratio after consolidation/% |
---|---|---|
C | 0 | 5.62 |
O | 56.93 | 56.32 |
Na | 9.57 | 2.56 |
Mg | 0.91 | 1.12 |
P | 12.04 | 13.23 |
Ca | 20.55 | 21.15 |
Total | 100.00 | 100.00 |
Fig. 11 Cross-sectional topographies of fragile bone samples before and after consolidation treatments (a) Untreated; (b-d) Treated by brushing, soaking and dripping, respectively
Fig. 12 Cross-sectional topographies of fragile bone samples treated by different mass ratios of calcium oxide to calcium hydrogen phosphate (a) 1 : 1; (b) 1 : 3; (c) 1 : 4; (d) 1 : 5; (e) 1 : 6; (f) 1 : 7
Fig. 14 Effect of consolidant ratio on final product Ratios of calcium oxide to calcium hydrogen phosphate in line(a-f) are 1 : 1, 1 : 3, 1 : 4, 1 : 5, 1 : 6 and 1 : 7, respectively
Ratio of CaO : CaHPO4 | Ca(OH)2 | CaHPO4 | Ca5(PO)4OH |
---|---|---|---|
1 : 1 | +++ | - | ++ |
1 : 3 | - | - | ++++ |
1 : 4 | - | ++ | +++ |
1 : 5 | - | +++ | ++ |
1 : 6 | - | +++ | + |
1 : 7 | - | ++++ | + |
Table 3 Phases of produts under different consolidant ratios
Ratio of CaO : CaHPO4 | Ca(OH)2 | CaHPO4 | Ca5(PO)4OH |
---|---|---|---|
1 : 1 | +++ | - | ++ |
1 : 3 | - | - | ++++ |
1 : 4 | - | ++ | +++ |
1 : 5 | - | +++ | ++ |
1 : 6 | - | +++ | + |
1 : 7 | - | ++++ | + |
[1] | 王丽琴, 程德润, 党高潮, 等. 湿度对骨质文物的影响及最佳存放湿度的研究. 文物保护与考古科学, 2002, 14(1): 10. |
[2] |
LUKASKI H C. Methods for the assessment of human body composition: traditional and new. The American Journal of Clinical Nutrition, 1987, 46(4): 537.
DOI URL |
[3] |
JANS M M E, NIELSEN-MARSH C M, SMITH C I, et al. Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 2004, 31(1): 87.
DOI URL |
[4] |
JACKES M, SHERBURNE R, LUBELL D, et al. Destruction of microstructure in archaeological bone: a case study from Portugal. International Journal of Osteoarchaeology, 2001, 11(6): 415.
DOI URL |
[5] |
TURNER-WALKER G. The mechanical properties of artificially aged bone: probing the nature of the collagen-mineral bond. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(1/2): 17.
DOI URL |
[6] | 王翀, 齐扬, 刘林西, 等. 骨角质文物保护研究进展. 文物保护与考古科学, 2016, 28(1): 118. |
[7] | 王有为. 福建昙石山遗址出土骨质文物现场保护述略. 中国文物科学研究, 2015, 39(3): 79. |
[8] | 肖璘, 白玉龙, 孙杰. 金沙遗址出土古象牙的现场清理加固保护. 文物保护与考古科学, 2004, 16(3): 24. |
[9] | 赵星. 湿固化聚氨酯文物加固材料的制备与应用. 西安: 西北大学博士学位论文, 2019. |
[10] | 王丽琴, 杨璐. 文物保护原则之探讨. 华夏考古, 2011, 97(3): 143. |
[11] |
POLI T, TONIOLO L, SANSONETTI A. Durability of protective polymers: the effect of UV and thermal ageing. Macromolecular Symposia, 2006, 238(1): 78.
DOI URL |
[12] |
LAZZARI M, LEDO-SUÁREZ A, LÓPEZ T, et al. Plastic matters: an analytical procedure to evaluate the degradability of contemporary works of art. Analytical and Bioanalytical Chemistry, 2011, 399(9): 2939.
DOI PMID |
[13] | 刘晓清. 出土骨质文物保护现状概述. 旅游纵览(行业版), 2012, 2(4): 178. |
[14] | 刘妍, 吕新妍, 杨富巍, 等. 无机材料在骨质文物加固保护中的应用. 无机化学学报, 2022, 38(5): 777. |
[15] | 张秉坚, 魏国锋, 杨富巍, 等. 不可移动文物保护材料研究中的问题和发展趋势. 文物保护与考古科学, 2010, 22(4): 102. |
[16] |
BAGLIONI M, GIORGI R, BERTI D, et al. Smart cleaning of cultural heritage: a new challenge for soft nanoscience. Nanoscale, 2012, 4(1): 42.
DOI PMID |
[17] | 李依林, 凌雪, 杨利平, 等. 现代化学材料在骨角质遗物保护中的应用. 高分子材料科学与工程, 2021, 37(2): 168. |
[18] |
GIORGI R, BAGLIONI M, BERTI D, et al. New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Accounts of Chemical Research, 2010, 43(6): 695.
DOI PMID |
[19] | 葛丹阳. 微生物诱导碳酸钙沉积技术对考古骨的仿生加固研究. 长春: 吉林大学硕士学位论文, 2020. |
[20] | PALAZZO A, MEGNA B, REICHE I, et al. Comparative study between four consolidation systems suitable for archaeological bone artefacts. Archäometrie, Kunsttechnologie und Konservierungswissenschaf, 2015, 103. |
[21] | 杨富巍, 刘妍, 张坤, 等. 羟基磷灰石材料在文物保护中的应用述评. 文物保护与考古科学, 2021, 33(2): 105. |
[22] | 刘妍, 杨富巍. 一种多孔骨角质文物的加固处理方法. CN201911073513.4. 2020-01-10. |
[23] | 王补宣, 李春辉, 彭晓峰. 纳米颗粒悬浮液稳定性分析. 应用基础与工程科学学报, 2003, 11(2): 167. |
[24] | 杨春光, 乔爱平, 侯金飚, 等. 纳米粉体团聚的原因及解决方法. 山西化工, 2003, 23(1): 56. |
[25] | 颜景平, 党根茂. 行星式球磨机最佳参数的理论分析. 电子工业专用设备, 1990, 3: 47. |
[26] | 李依林. 羟基磷灰石加固脆弱骨质遗存的应用研究. 西安: 西北大学博士学位论文, 2021. |
[27] | 王恺, 胡东波. 磷灰石——胶原仿生复合材料在甲骨文物保护中的应用. 中国国家博物馆馆刊, 2013, 116(3): 141. |
[28] | 成小林, 原思训. 周原甲骨的加固保护研究. 中国国家博物馆馆刊, 2002, 4: 81. |
[29] |
RODRIGUES J D, GROSSI A. Indicators and ratings for the compatibility assessment of conservation actions. Journal of Cultural Heritage, 2007, 8(1): 32.
DOI URL |
[30] | TERZU R, BARAJ E, YU S, et al. Ananalytical study of marble consolidation by oxalate precipitation using density, FTIR and powder-XRD measurements. Journal of Engineering & Processing Management, 2016, 8(1): 21. |
[31] | IBRAHIM M M, MOHAMED W S, MOHAMED H M. Evaluation of the efficacy of traditional and nano paraloid b72 for pottery consolidation. International Journal of Conservation Science, 2022, 13(1): 15. |
[32] |
CHATZIPANAGIS K, BAUMANN C G, SANDRI M, et al. In situ mechanical and molecular investigations of collagen/apatite biomimetic composites combining Raman spectroscopy and stress-strain analysis. Acta Biomaterialia, 2016, 46: 278.
DOI URL |
[33] |
STINER M C, KUHN S L, WEINER S, et al. Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science, 1995, 22(2): 223.
DOI URL |
[34] |
ADAMIANO A, FABBRI D, FALINI G, et al. A complementary approach using analytical pyrolysis to evaluate collagen degradation and mineral fossilisation in archaeological bones: the case study of Vicenne-Campochiaro necropolis (Italy). Journal of Analytical and Applied Pyrolysis, 2013, 100: 173.
DOI URL |
[35] |
FIGUEIREDO M, FERNANDO A, MARTINS G, et al. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceramics International, 2010, 36(8): 2383.
DOI URL |
[36] | 王剑龙, 何由, 程哲, 等. 自固化磷酸钙骨水泥的制备及其性能评估. 中国组织工程研究, 2018, 22(18): 2800. |
[37] | 赵瑨云, 刘瑞来, 徐婕, 等. 原位合成羟基磷灰石/壳聚糖复合吸附剂及除氟特性研究. 高分子通报, 2021, 262(02): 54. |
[38] |
YANG F, HE D, LIU Y, et al. Conservation of bone relics using hydroxyapatite as protective material. Applied Physics A, 2016, 122(4): 479.
DOI URL |
[39] | 袁广华, 房起凯, 房立民, 等. 利用高强无机纤维材料修复骨质文物的方法. CN202110415412.1. 2021-07-30. |
[1] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[2] | CHEN Yaling, SHU Song, WANG Shaoxin, LI Jianjun. Mn-HAP SCR Catalyst: Preparation and Sulfur Resistance [J]. Journal of Inorganic Materials, 2022, 37(10): 1065-1072. |
[3] | ZHU Yutong, TAN Peijie, LIN Hai, ZHU Xiangdong, ZHANG Xingdong. Injectable Hyaluronan/Hydroxyapatite Composite: Preparation, Physicochemical Property and Biocompatibility [J]. Journal of Inorganic Materials, 2021, 36(9): 981-990. |
[4] | LIN Ziyang, CHANG Yuchen, WU Zhangfan, BAO Rong, LIN Wenqing, WANG Deping. Different Simulated Body Fluid on Mineralization of Borosilicate Bioactive Glass-based Bone Cement [J]. Journal of Inorganic Materials, 2021, 36(7): 745-752. |
[5] | WU Zhongcao, HUAN Zhiguang, ZHU Yufang, WU Chengtie. 3D Printing and Characterization of Microsphere Hydroxyapatite Scaffolds [J]. Journal of Inorganic Materials, 2021, 36(6): 601-607. |
[6] | WU Yonghao, LI Xiangfeng, ZHU Xiangdong, ZHANG Xingdong. Construction of Hydroxyapatite Nanoceramics with High Mechanical Strength and Efficiency in Promoting the Spreading and Viability of Osteoblasts [J]. Journal of Inorganic Materials, 2021, 36(5): 552-560. |
[7] | SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite [J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096. |
[8] | SHAO Yueting, ZHU Yingjie, DONG Liying, CAI Anyong. Nanocomposite “Xuan Paper” Made from Ultralong Hydroxyapatite Nanowires and Cellulose Fibers and Its Anti-mildew Properties [J]. Journal of Inorganic Materials, 2021, 36(1): 107-112. |
[9] | SUN Tuanwei,ZHU Yingjie. One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires [J]. Journal of Inorganic Materials, 2020, 35(6): 724-728. |
[10] | LIU Ziyang, GENG Zhen, LI Zhaoyang. Preparing Biomedical CaCO3/HA Composite with Oyster Shell [J]. Journal of Inorganic Materials, 2020, 35(5): 601-607. |
[11] | DAI Zhao,WANG Ming,WANG Shuang,LI Jing,CHEN Xiang,WANG Da-Lin,ZHU Ying-Chun. Zirconia Reinforced Trace Element Co-doped Hydroxyapatite Coating [J]. Journal of Inorganic Materials, 2020, 35(2): 179-186. |
[12] | FU Ya-Kang,WENG Jie,LIU Yao-Wen,ZHANG Ke-Hong. hBMP-2 Contained Composite Coatings on Titanium Mesh Surface: Preparation and hBMP-2 Release [J]. Journal of Inorganic Materials, 2020, 35(2): 173-178. |
[13] | ZHOU Zihang, WANG Qun, GE Xiang, LI Zhaoyang. Strontium Doped Hydroxyapatite Nanoparticles: Synthesis, Characterization and Simulation [J]. Journal of Inorganic Materials, 2020, 35(11): 1283-1289. |
[14] | XIAO Wen-Qian,ZHANG Jing,LI Ke-Jiang,ZOU Xin-Yu,CAI Yu-Dong,LI Bo,LIU Xue,LIAO Xiao-Ling. Litchi-like Superparamagnetic Hydroxyapatite Microspheres with Hierarchically Mesoporous Microspheres [J]. Journal of Inorganic Materials, 2019, 34(9): 925-932. |
[15] | Jin-Jie WU, Yan LI, Ren-Chu WEI, Jian-Xin WANG, Shu-Xin QU, Jie WENG, Wei ZHI. Bioactivity and Mechanical Stability of Hydroxyapatite Ceramicsunder Micro-vibration Environment [J]. Journal of Inorganic Materials, 2019, 34(4): 417-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||