[1] RONG Y, HU Y, MEI A, et al. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaat8235. [2] CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739-744. [3] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. [4] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2: 591. [5] FU P, HU S, TANG J, et al. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Front. Optoelectron., 2021, 14: 252-259. [6] LIU D, WANG L, CUI Q, et al. Planar metasurfaces enable high-efficiency colored perovskite solar cells. Advanced Science, 2018, 5(10): 1800836. [7] AMIRI O, REZAEE A E, TEYMOURINIA H, et al. New strategy to overcome the instability that could speed up the commercialization of perovskite solar cells. Adv. Mater. Interfaces, 2019, 6(9): 1900134. [8] ZHANG Y, LIU Z, JI C, et al. Low-temperature oxide/metal/oxide multilayer films as highly transparent conductive electrodes for optoelectronic devices. ACS Applied Energy Materials, 2021, 4(7): 6553-6561. [9] LIU W W, HU Z L, WANG L, et al. Passiviation of L-3-(4-pyridyl)-alanine on interfacial defects of perovskite solar cell. Journal of Inorganic Materials, 2021, 36(6): 629-636. [10] YANG D D, LI X M, MENG C F, et al. Research progress on the stability of CsPbX3 nanocrystals. Journal of Inorganic Materials, 2020, 35(10): 1088-1098. [11] MENG G, YE Y Q, FAN L M, et al. Recent progress of halide perovskite radiation detector materials. Journal of Inorganic Materials, 2020, 35(11): 1203-1213. [12] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 2014, 7(3): 982-988. [13] MIN H, KIM M, LEE S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366(6466): 749. [14] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592(7854): 381-385. [15] WANG Y X, GAO P Y, FAN X Y, et al. Effect of SnO2 annealing temperature on the performance of perovskite solar cells. Journal of Inorganic Materials, 2021, 36(2): 168-174. [16] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316-319. [17] ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542-546. [18] LIU T, CHEN K, HU Q, et al. Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater., 2016, 6(17): 1600457. [19] KU Z, RONG Y, XU M, et al. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep., 2013, 3: 3132. [20] MEI A, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295-298. [21] RONG Y, HOU X, HU Y, et al. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun., 2017, 8: 14555. [22] HOU X, XU M, TONG C, et al. High performance printable perovskite solar cells based on Cs0.1FA0.9PbI3 in mesoporous scaffolds. J. Power Sources, 2019, 415: 105-111. [23] DU J, LIU S, WU J, et al. Crystallization control of methylammonium- free perovskite in two-step deposited printable triple-mesoscopic solar cells. Solar RRL, 2020, 4(12): 2000455. [24] WANG Q, ZHANG W, ZHANG Z, et al. Crystallization control of ternary-cation perovskite absorber in triple-mesoscopic layer for efficient solar cells. Adv. Energy Mater., 2020, 10(5): 1903092. [25] HOU X, HU Y, LIU H, et al. Effect of guanidinium on mesoscopic perovskite solar cells. J. Mater. Chem. A, 2017, 5(1): 73-78. [26] GUAN Y, XU M, ZHANG W, et al. In situ transfer of CH3NH3PbI3 single crystals in mesoporous scaffolds for efficient perovskite solar cells. Chem. Sci., 2020, 11(2): 474-481. [27] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater., 2014, 13: 897-903. [28] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647. [29] DONG Q, YUAN Y, SHAO Y, et al. Abnormal crystal growth in CH3NH3PbI3-xClx using a multi-cycle solution coating process. Energy Environ. Sci., 2015, 8(8): 2464-2470. [30] ZHANG W, SALIBA M, MOORE D T, et al. Ultrasmooth organic- inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun, 2015, 6: 6142. [31] CHEN Q, ZHOU H, SONG T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett., 2014, 14(7): 4158-4163. [32] KIM Y C, JEON N J, NOH J H, et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater., 2016, 6(4): 1502104. [33] WAN Z, XU M, FU Z, et al. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells. Front. Optoelectron., 2019, 12: 344-351. |