 
 Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (9): 991-998.DOI: 10.15541/jim20200698
Special Issue: 【虚拟专辑】热电材料(2020~2021)
• RESEARCH LETTER • Previous Articles Next Articles
					
													YANG Dongwang1( ), LUO Tingting1,2, SU Xianli1, WU Jinsong1,2, TANG Xinfeng1(
), LUO Tingting1,2, SU Xianli1, WU Jinsong1,2, TANG Xinfeng1( )
)
												  
						
						
						
					
				
Received:2020-12-04
															
							
																	Revised:2021-02-03
															
							
															
							
																	Published:2021-09-20
															
							
																	Online:2021-03-12
															
						Contact:
								TANG Xinfeng, professor. E-mail: tangxf@whut.edu.cn     
													About author:YANG Dongwang (1989-), male, PhD. E-mail: ydongwang@whut.edu.cn				
													Supported by:CLC Number:
YANG Dongwang, LUO Tingting, SU Xianli, WU Jinsong, TANG Xinfeng. Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process[J]. Journal of Inorganic Materials, 2021, 36(9): 991-998.
| [1] | ROWE D M, CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995. | 
| [2] | HE J, KANATZIDIS M G, DRAVID V P. High performance bulk thermoelectrics via a panoscopic approach. Materials Today, 2013, 16(5):166-176. DOI URL | 
| [3] | SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008, 7:105-114. DOI URL | 
| [4] | ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496):373-377. DOI URL | 
| [5] | SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemical Society, 2011, 133(20):7837-7846. DOI URL | 
| [6] | ZHAO W, LIU Z, SUN Z, et al. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671):247-251. DOI URL | 
| [7] | LIU R, CHEN H, ZHAO K, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 2017, 29(38):1702712. DOI URL | 
| [8] | HU L, ZHANG Y, WU H, et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Advanced Energy Materials, 2018, 8(29):1802116. DOI URL | 
| [9] | QIU Y, JIN Y, WANG D, et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. Journal of Materials Chemistry A, 2019, 7(46):26393-26401. DOI URL | 
| [10] | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, 6(5):299-303. DOI URL | 
| [11] | SENKOV O N, MILLER J D, MIRACLE D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 2015, 6:1-10. | 
| [12] | ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61:1-93. DOI URL | 
| [13] | PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345):66-69. DOI URL | 
| [14] | PEI Y, LALONDE A, IWANAGA S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011, 4(6):2085-2089. | 
| [15] | HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888):554-557. DOI URL | 
| [16] | GUIN S N, CHATTERJEE A, NEGI D S, et al. High thermoelectric performance in tellurium free p-type AgSbSe2. Energy & Environmental Science, 2013, 6(9):2603-2608. | 
| [17] | PAN L, BÉRARDAN D, DRAGOE N. High thermoelectric properties of n-type AgBiSe2. Journal of the American Chemical Society, 2013, 135(13):4914-4917. DOI URL | 
| [18] | PARKER D S, MAY A F, SINGH D J. Benefits of carrier-pocket anisotropy to thermoelectric performance: the case of p-type AgBiSe2. Physical Review Applied, 2015, 3(6):064003. DOI URL | 
| [19] | GUIN S N, BISWAS K. Cation disorder and bond anharmonicity optimize the thermoelectric properties in kinetically stabilized rocksalt AgBiS2 nanocrystals. Chemistry of Materials, 2013, 25(15):3225-3231. DOI URL | 
| [20] | CHAMBERLAIN A L, FAHRENHOLTZ W G, HILMAS G E. Pressureless sintering of zirconium diboride. Journal of the American Ceramic Society, 2006, 89(2):450-456. DOI URL | 
| [21] | PEI Y L, WU H, SUI J, et al. High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy & Environmental Science, 2013, 6(6):1750-1755. | 
| [22] | SU X, FU F, YAN Y, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nature Communication, 2014, 5(1):4908-4914. DOI URL | 
| [23] | HU T, YANG D, SU X, et al. Interpreting the combustion process for high-performance ZrNiSn thermoelectric materials. ACS Applied Materials & Interfaces, 2017, 10:864-872. | 
| [24] | YANG D, SU X, YAN Y, et al. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1-xPbxCuSeO. Chemistry of Materials, 2016, 28:4628-4640. DOI URL | 
| [25] | YANG D, SU X, MENG F, et al. Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. Journal of Materials Chemistry A, 2017, 5:23243-23251. DOI URL | 
| [26] | MERZHANOV A G. SHS processes: combustion theory and practice. Arch. Combustionis, 1981, 1:4. | 
| [27] | XIAO C, QIN X, ZHANG J, et al. High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. Journal of the American Chemical Society, 2012, 134(44):18460-18466. DOI URL | 
| [1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. | 
| [2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. | 
| [3] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. | 
| [4] | ZHANG Botao, SUN Tingting, WANG Lianjun, JIANG Wan. Inkjet Printing Preparation of AgCuTe Thermoelectric Thin Films [J]. Journal of Inorganic Materials, 2024, 39(12): 1325-1330. | 
| [5] | TIAN Zhen, JIANG Quanwei, LI Jianbo, YU Lifeng, KANG Huijun, WANG Tongmin. Simultaneous Optimization of Electrical and Thermal Transport Properties of BiSbSe1.50Te1.50 Thermoelectrics by Hot Deformation [J]. Journal of Inorganic Materials, 2024, 39(12): 1316-1324. | 
| [6] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. | 
| [7] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. | 
| [8] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. | 
| [9] | YAO Lei, YANG Dongwang, YAN Yonggao, TANG Xinfeng. Laser-induced Self-propagating High-temperature Synthesis of Skutterudite [J]. Journal of Inorganic Materials, 2023, 38(7): 815-822. | 
| [10] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. | 
| [11] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. | 
| [12] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. | 
| [13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. | 
| [14] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. | 
| [15] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||