Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 461-470.DOI: 10.15541/jim20200416
Special Issue: 电致变色材料与器件; 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• TOPLCAL SECTION • Previous Articles Next Articles
WANG Jinmin1,2(), HOU Lijun1, MA Dongyun1,2
Received:
2020-07-24
Revised:
2020-09-17
Published:
2021-05-20
Online:
2021-04-19
About author:
WANG Jinmin (1975-), male, professor. E-mail:wangjinmin@sspu.edu.cn;jmwang@usst.edu.cn
Supported by:
CLC Number:
WANG Jinmin, HOU Lijun, MA Dongyun. Molybdenum Oxide Electrochromic Materials and Devices[J]. Journal of Inorganic Materials, 2021, 36(5): 461-470.
Fig. 3 Application field of water/solvothermal method (a), schematic diagram of water/solvothermal method equipment (b), and general steps of water/solvothermal preparation (c)[40]
Fig. 5 Chronocoulometry of six- to ten-layer MoO3 ?lm after applying +1.5/-1.5 V for 15/15 s (a) and effect of the number of MoO3 thin film layers on its charge density (b)[26] Colouful figures are available on roebsite
Fig. 7 SEM images of α-MoO3 crystals with a multi-layer stack structure at different magnifications (a-c), SEM image of MoO3 crystals obtained by calcination of commercial molybdic acid (MoO3·H2O) (d), and SEM image of α-MoO3 stacking with 44 layers (e)[57]
Fig. 9 In-situ kinetic properties measured at 632.8 nm for W0.71Mo0.29O3 film, PEDOT:PSS film and W0.71Mo0.29O3/PEDOT:PSS film (a), coloration efficiencies (b), and cycling stabilities (c) of the electrodes[66]
Fig. 10 Schematic diagram of a complementary electrochromic battery (a), visible-near-infrared transmission spectra of single active layer electrochromic battery (b) and complementary electrochromic batteries (c), discharge curves (current density is 0.05 mA·cm-2) of single-layer device and complementary device (d), and complementary electrochromic batteries lighting up the LED for 10 min after being colored at -2.5 V (e)[70]
[1] |
WANG S Z, CAI S W, CAI W A, et al. Organic-inorganic hybrid electrochromic materials, polysilsesquioxanes containing triarylamine, changing color from colorless to blue. Scientific Reports, 2017,7(1):14627.
DOI URL PMID |
[2] |
WANG Z, WANG X Y, CONG S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry- perot nanocavities. Nature Communications, 2020,11(1):302.
DOI URL PMID |
[3] |
WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Materials Science and Engineering: R: Reports, 2020,140:100524.
DOI URL |
[4] |
HASANI A, LE Q V, NGUYEN T P, et al. Facile solution synthesis of tungsten trioxide doped with nanocrystalline molybdenum trioxide for electrochromic devices. Scientific Reports, 2017,7(1):13258.
DOI URL PMID |
[5] |
LIN Y S, TSAI T H, HUNG S C, et al. Enhanced lithium electrochromism of atmospheric pressure plasma jet-synthesized tungsten/ molybdenum oxide films for flexible electrochromic devices. Journal of Solid State Electrochemistry, 2013,17(4):1077-1088.
DOI URL |
[6] |
BECHINGER C, FERRERE S, ZABAN A, et al. Photoelectrochromic windows and displays. Nature, 1996,383(6601):608-610.
DOI URL |
[7] |
XIONG K, EMILSSON G, MAZIZ A, et al. Plasmonic metasufaces with conjugated polymers for flexible electronic paper in color. Advanced Materials, 2016,28(45):9956-9960.
DOI URL PMID |
[8] |
WANG J M, YU H Y, MA D Y. Progress in the preparation and application of nanostructured manganese dioxide. Journal of Inorganic Materials, 2020,35(12):1307-1314.
DOI URL |
[9] |
CHANG C C, CHI P W, CHANDAN P, et al. Electrochemistry and rapid electrochromism control of MoO3/V2O5 hybrid nanobilayers. Materials, 2019,12(15):2475.
DOI URL |
[10] |
XU T, WALTER E C, AGRAWAL A, et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nature Communications, 2016,7(1):10479.
DOI URL |
[11] |
PLATT J R. Electrochromism, a possible change of color producible in dyes by an electric field. The Journal of Chemical Physics, 1961,34(3):862-863.
DOI URL |
[12] |
SUI Q, REN X T, DAI Y X, et al. Piezochromism and hydrochromism through electron transfer: new stories for viologen materials. Chemical Science, 2017,8(4):2758-2768.
URL PMID |
[13] |
YU W H, ZHANG Y, KANG E T, et al. Electroless metallization of dielectric SiLK surfaces functionalized by viologen. Journal of The Electrochemical Society, 2003,150(8):F156-F163.
DOI URL |
[14] |
MI S, WU J C, LIU J, et al. AIEE-active and electrochromic bifunctional polymer and device composed thereof synchronously achieving electrochemical fluorescence switching and electrochromic switching. ACS Applied Materials & Interfaces, 2015,7(49):27511-27517.
URL PMID |
[15] |
CHEN X M, LIU H L, XU Z P, et al. Highly regiosymmetric homopolymer based on dioxythiophene for realizing water- processable blue-to-transmissive electrochrome. ACS Applied Materials & Interfaces, 2015,7(21):11387-11392.
DOI URL PMID |
[16] |
DEB S K. A novel electrophotographic system. Applied Optics, 1969,8(Suppl 1):192-195.
DOI URL |
[17] |
ATINAFU D G, DONG W, DU M. Controllable synthesis and surface modification of molybdenum oxide nanowires: a short review. Tungsten, 2019,1(4):258-265.
DOI URL |
[18] |
HE Y C, LI T Z, ZHONG X L, et al. Lattice and electronic structure variations in critical lithium doped nickel oxide thin film for superior anode electrochromism. Electrochimica Acta, 2019,316:143-151.
DOI URL |
[19] |
BULJA S, KOPF R, NOLAN K, et al. Tuneable dielectric and optical characteristics of tailor-made inorganic electro-chromic materials. Scientific Reports, 2017,7(1):13484.
URL PMID |
[20] |
MA Y, ZHANG X, YANG M, et al. Controlled growth of MoO3 nanorods on transparent conducting substrates Materials Letters, 2014,136:146-149.
DOI URL |
[21] |
ZHUO Q Q, TANG J J, SUN J, et al. High efficient reduction of graphene oxide via nascent hydrogen at room temperature. Materials, 2018,11(3):340.
DOI URL |
[22] |
LI Y B, BANDO Y, GOLBERG D, et al. Field emission from MoO3 nanobelts. Applied Physics Letters, 2002,81(26):5048.
DOI URL |
[23] |
CHOI H, HEO J H, HA S, et al. Facile scalable synthesis of MoO2 nanoparticles by new solvothermal cracking process and their application to hole transporting layer for CH3NH3PbI3 planar perovskite solar cells. Chemical Engineering Journal, 2017,310:179-186.
DOI URL |
[24] |
TAO T, CHEN Q Y, HU H P, et al. MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications Materials Letters, 2011,66(1):102-105.
DOI URL |
[25] |
ZENG L, CHENG C Y. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts. Hydrometallurgy, 2009,98(1):1-9.
DOI URL |
[26] |
LEMOS R M J, ALCÁZAR J C B, CARREÑO N L V, et al. Influence of molybdenum trioxide thin film thickness on its electrochemical properties. Molecular Crystals and Liquid Crystals, 2017,655(1):40-50.
DOI URL |
[27] |
YANG P H, SUN P, MAI W J. Electrochromic energy storage devices. Materials Today, 2016,19(7):394-402.
DOI URL |
[28] | ZHANG X, LI W J, LI Y, et al. Research progress of inorganic all-solid-state electrochromic devices. Materials Science and Technology, 2020,28(3):140-149. |
[29] | MORTIMER R J, ROSSEINSKY D R, MONK P M S. Electrochromic Materials and Devices. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015: 1-638. |
[30] |
JIA H X, CAO X, JIN P S. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020,35(5):511-524.
DOI URL |
[31] |
ZHAO X H, WEI C, GAI Z Q, et al. Chemical vapor deposition and its application in surface modification of nanoparticles. Chemical Papers, 2020,74(3):767-778.
DOI URL |
[32] |
GESHEVA K A, CZIRAKI A, IVANOVA T, et al. Crystallization of chemically vapor deposited molybdenum and mixed tungsten/ molybdenum oxide films for electrochromic application. Thin Solid Films, 2007,515(11):4609-4613.
DOI URL |
[33] | IVANOVA T, GESHEVA K A, POPKIROV G, et al. Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices. Materials Science & Engineering B, 2005,119(3):232-239. |
[34] |
ARROYO-HERNÁNDEZ M, ÁLVARO R, SERRANO S, et al. Catalytic growth of ZnO nanostructures by r.f. magnetron sputtering. Nanoscale Research Letters, 2011,6(1):1-6.
URL PMID |
[35] |
USHA N, SIVAKUMAR R, SANJEEVIRAJA C. Structural, optical and electrochromic properties of Nb2O5:MoO3 (95:5, 90:10, and 85:15) thin films prepared by RF magnetron sputtering technique. Materials Letters, 2018,229(15):189-192.
DOI URL |
[36] |
ALVARADO J A, MALDONADO A, JUAREZ H, et al. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation. Beilstein Journal of Nanotechnology, 2015,6:971-975.
DOI URL PMID |
[37] |
VARNAMKHASTI M G, FALLAH H R, ZADSAR M. Effect of heat treatment on characteristics of nanocrystalline ZnO films by electron beam evaporation. Vacuum, 2012,86(7):871-875.
DOI URL |
[38] | MIYATA N, SUZUKI T, OHYAMA R. Physical properties of evaporated molybdenum oxide films. Thin Solid Films, 1996,281:218-222. |
[39] | DIXIT D, MADHURI K V. Effect of oxygen partial pressure on the growth of molybdenum trioxide thin films. Materials Today: Proceedings, 2019,19:2688-2692. |
[40] |
YANG G J, PARK S J. Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials, 2019,12(7):1-18.
DOI URL |
[41] |
QURESHI N, ARBUJ S, SHINDE M, et al. Swift tuning from spherical molybdenum microspheres to hierarchical molybdenum disulfide nanostructures by switching from solvothermal to hydrothermal synthesis route. Nano Convergence, 2017,4(1):25.
DOI URL PMID |
[42] | SHI E W, XIA C T, WANG B G, et al. Development application and of hydrothermal method. Journal of Inorganic Materials, 1996,11(2):193-206. |
[43] |
ZHOU E, TIAN L L, CHENG Z F, et al. Design of NiO flakes@CoMoO4 nanosheets core-shell architecture on Ni foam for high- performance supercapacitors. Nanoscale Research Letters, 2019,14(1):1-11.
URL PMID |
[44] |
YAO B, HUANG L, ZHANG J, et al. Flexible transparent molybdenum trioxide nanopaper for energy storage. Advanced Materials, 2016,28(30):6353-6358.
DOI URL PMID |
[45] |
HE S H, LI W D, FENG L, et al. Rational interaction between the aimed gas and oxide surfaces enabling high-performance sensor: the case of acidic α-MoO3 nanorods for selective detection of triethylamine Journal of Alloys and Compounds, 2019,783:574-582.
DOI URL |
[46] |
JITTIARPORN P, BADILESCU S, SAWAFTA M N A, et al. Electrochromic properties of Sol-Gel prepared hybrid transition metal oxides-a short review. Journal of Science: Advanced Materials and Devices, 2017,2(3):286-300.
DOI URL |
[47] |
WANG Y H, BOUCHNEB M, ALAUZUN J G, et al. Tuning texture and morphology of mesoporous TiO2 by non-hydrolytic Sol- Gel syntheses. Molecules, 2018,23(11):3006.
DOI URL |
[48] |
DHANASANKAR M, PURUSHOTHAMAN K K, MURALIDHARAN G. Enhanced electrochromism in cerium doped molybdenum oxide thin films. Materials Research Bulletin, 2010,45(12):1969-1972.
DOI URL |
[49] | ZHANG J Y, YU Z R, DU J H. Fabrication and electrochromic properties of NiO electrodeposit films. Journal of Chinese Electron Microscopy Society, 1997,16(4):451-452. |
[50] | WEN Y Y, ZHONG X H, HONG Y Z, et al. Fabrication of molybdenum oxides/carbon nanotube composite fibers by electrochemical deposition and its electrochemical behavior. Journal of the Chinese Ceramic Society, 2012,40(8):1220-1223. |
[51] |
ZHUZHEL’SKII D V, YALDA K D, SPIRIDONOV V N, et al. Electrochemical deposition of molybdenum oxide into films of poly (3,4-ethylenedioxythiophene) conducting polymer on glassy carbon substrates. Russian Journal of Applied Chemistry, 2016,89(8):1252-1260.
DOI URL |
[52] |
KÄRBER E, KATERSKI A, ACIK O I, et al. Low-cost plasmonic solar cells prepared by chemical spray pyrolysis. Beilstein Journal of Nanotechnology, 2014,5(1):2398-2402.
DOI URL |
[53] |
DUNDAR I, KRICHEVSKAYA M, KATERSKI A, et al. TiO2 thin films by ultrasonic spray pyrolysis as photocatalytic material for air purification. Royal Society Open Science, 2019,6(2):181578.
DOI URL PMID |
[54] |
CHO J S. Large scale process for low crystalline MoO3-carbon composite microspheres prepared by one-step spray pyrolysis for anodes in lithium-ion batteries. Nanomaterials, 2019,9(4):539.
DOI URL |
[55] |
MOUSAVI-ZADEH S H, RAHMANI M B. Synthesis and ethanol sensing characteristics of nanostructured MoO3:Zn thin films. Surface Review and Letters, 2018,25(4):1850046.
DOI URL |
[56] | YU H, LI Y, ZHAO L, et al. Novel MoO3-TiO2 composite nanorods films with improved electrochromic performance. Materials Letters, 2016,169:65-68. |
[57] |
MARTíN-RAMOS P, FERNÁNDEZ-COPPEL I, AVELLA M, et al. α-MoO3 crystals with a multilayer stack structure obtained by annealing from a lamellar MoS2/g-C3N4 nanohybrid. Nanomaterials, 2018,8(7):559.
DOI URL |
[58] | ZHANG Y Z, HUANG Y S, CAO Y Z, et al. Synthesis and electro- photochromic properties of lithium-doped MoO3 films Chinese Journal of Liquid Crystals and Displays, 2002,17(3):163-168. |
[59] | MAHAJAN S S, MUJAWAR S H, SHINDE P S, et al. Structural, morphological, optical and electrochromic properties of Ti-doped MoO3 thin films Solar Energy Materials and Solar Cells, 2009,93(2):183-187. |
[60] | LAYEGH M, GHODSI F E, HADIPOUR H. Experimental and theoretical study of Fe doping as a modifying factor in electrochemical behavior of mixed-phase molybdenum oxide thin films. Applied Physics A: Materials Science & Processing, 2019,126(1):372-387. |
[61] | KAMOUN OLFA, MAMI A, AMARA M A, et al. Nanostructured Fe, Co-codoped MoO3 thin films Micromachines, 2019,10(2):138. |
[62] | ZUO Y, MA D Y, XU Z P, et al. Hydrothermal growth, device preparation and electrochromic properties of nano-molybdenum oxide film. Journal of Shanghai Second Polytechnic University, 2017,34(2):81-86. |
[63] | LIU S, XU Z P, MA D Y, et al. Preparation of MoO3 thin film by MoS2 oxidation method, device assembly and electrochromic properties. Journal of Shanghai Second Polytechnic University, 2018,35(2):111-116. |
[64] |
KARTEN K, HEIN A, CIOBARU M, et al. Complementary hybrid electrodes for high contrast electrochromic devices with fast response. Nature Communications, 2019,10(1):4874.
DOI URL PMID |
[65] | ZHANG G, ZHANG W Z, WANG S M. Preparation of molybdenum oxide/polypyrrole composite membrane and study on its discoloration properties. Journal of Xi'an University of Technology, 2018,38(1):1-6, 13. |
[66] |
LI H Z, MCRAE L, ELEZZABI A Y. Solution-processed interfacial PEDOT:PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Applied Materials & Interfaces, 2018,10(12):10520-10527.
DOI URL PMID |
[67] |
WANG W Q, WANG X L, XIA X H, et al. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale, 2018,10(17):8162-8169.
DOI URL PMID |
[68] |
WANG J M, ZHANG L, YU L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery application. Nature Communications, 2014,5:4921.
DOI URL PMID |
[69] |
CONG S, TIAN Y, LI Q W, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Advanced Materials, 2014,26(25):4260-4267.
DOI URL PMID |
[70] | LI H Z, MCRAE L, FIRBY C J, et al. Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows. Nano Energy, 2018,47:130-139. |
[71] | YANG B, MA D Y, ZHENG E M, et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cells, 2019,192:1-7. |
[1] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. |
[2] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[3] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[4] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
[5] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[6] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[7] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[8] | PAN Yuzhou, HE Fajian, XU Lulu, DAI Shixun. Broadband 3 μm Mid-infrared Emission in Dy3+/Yb3+ Co-doped Tellurite Glass under 980 nm LD Excitation [J]. Journal of Inorganic Materials, 2025, 40(5): 521-528. |
[9] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[10] | LI Jianjun, CHEN Fangming, ZHANG Lili, WANG Lei, ZHANG Liting, CHEN Huiwen, XUE Changguo, XU Liangji. Peroxymonosulfate Activation by CoFe2O4/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic [J]. Journal of Inorganic Materials, 2025, 40(4): 440-448. |
[11] | MU Shuang, MA Qin, ZHANG Yu, SHEN Xu, YANG Jinshan, DONG Shaoming. Oxidation Behavior of Yb2Si2O7 Modified SiC/SiC Mini-composites [J]. Journal of Inorganic Materials, 2025, 40(3): 323-328. |
[12] | YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329-336. |
[13] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[14] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[15] | WANG Yue, WANG Xin, YU Xianli. Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide [J]. Journal of Inorganic Materials, 2025, 40(3): 305-313. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||