Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (2): 113-128.DOI: 10.15541/jim20170255
Special Issue: 环境材料优选论文
• Orginal Article • Previous Articles Next Articles
CHEN Hang-Rong, ZHOU Xiao-Xia, SHI Jian-Lin
Received:
2017-05-22
Revised:
2017-08-31
Published:
2018-02-26
Online:
2018-01-26
Supported by:
CLC Number:
CHEN Hang-Rong, ZHOU Xiao-Xia, SHI Jian-Lin. Research Progress on Hierarchically Porous Zeolites: Structural Control, Synthesis and Catalytic Applications[J]. Journal of Inorganic Materials, 2018, 33(2): 113-128.
Fig. 2 (a) Schematic illustration of hierarchical microporous- mesoporous zeolite crystals ZSM-5 in the presence of an carbon template, typical SEM (b) and TEM (c) images of the templated zeolites, including the electron diffraction pattern[2]
Fig. 3 (a) Schematic synthetic process of hierarchically porous zeolite ZSM-5; (b) FE-SEM image and SAED pattern of the hierarchically porous zeolite ZSM-5; (c) Time dependence of the anisole conversion over different catalysts for Friedel-Crafts acylation of anisole and acetyl chloride[32]
Fig. 4 Schematic illustration of mesoporous zeolite Beta by using cationic polymers, N2 adsorption/desorption isotherms and the corresponding pore-size distribution curve and TEM image of mesoporous zeolite Beta[36,38]
Fig. 5 (a) Formation of ordered mesoporous materials between primary units and CTAB; (b) Amorphous mesophase or a mixture of the mesophse and pure zeolite crystals formed by the assembly between oligomers/nanoparticles and CTAB during room temperature aging; (c) The synthesis of hierarchical mesoporous zeolites (HMZ) by using zeolite subnanocrystal precursor to assemble with CTAB; (d) The formation of nanozeolite aggregates due to size-mismatch between nanocrystals and CTAB[41]
Fig. 6 SEM (a, b), TEM (c), and HR-TEM (d) images of hierarchical mesoporous ZSM-5 zeolites through co-templating of CTAB and F127, and (e) is the corresponding SAED pattern taken from the whole particle in image (c)[41]
Fig. 8 (a) Single quaternary ammoniums in the template molecules are located in the straight channel and serve as a template to direct the formation of SCZN; (b) SEM images of as-made samples by using different hydrophobic carbon chain, BCPh-n-6-6; (c) High-resolution transmission electron microscopy (HRTEM) images of as-made SCZN-2 templated by BCPh-6-6-6; (d) Pore properties of calcined SCZN-2[43]
Fig. 9 (A) Schematic drawing of the formation mechanism of sample ZSM-5-ODM; (B) N2 adsorption/desorption isotherms and corresponding BJH pore diameter distribution curves of the sample ZSM-5-ODM; (C) Low and high-magnification FE-SEM images of ZSM-5-ODM with an inset in (e) showing high-resolution image on particular sections; (f)Typical HR-TEM image of ZSM-5-ODM and the corresponding selected area electron diffraction (SAED) pattern (inset)[44]
Fig. 10 Chemical reaction illustration for the condensation of benzaldehyde with ethanol and the effect of reaction time on the conversion of benzaldehyde over the different samples[44]
Fig. 11 (a-e) TEM images of HMZS at different magnifications and its electron diffraction pattern; (f) XRD patterns, (g-h) N2 sorption isotherms and pore size distributions of MZS (●), HMZS (▲) and conventional ZSM-5 zeolite (■). Isotherms of MZS and HMZS are offset by 100 and 200 cm3/g[46]
Fig. 14 SEM (a), TEM (b, c) and HR-TEM (d) images of MZ-HCS. Inset in (a) is a deliberately selected capsule with a broken shell; the HR-TEM image was taken from the area in the black square of (c); (e-f) 27Al and 29Si MAS NMR spectra of (A) AAS and (B) MZ-HCS[47]
Fig. 16 Schematic representation of the synthesis of hierarchically micro-meso-macroprous aluminosilicates (left), and TEM investigation of the formation of micro-meso-macroporous aluminosilicate (right)[51]
Conv /% | Contact time /ms | BET surface area /(m2•g-1) | Si/Al | Product distribution/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |||||
MMM(2) | 28.59 | 12 | 562 | 80 | 25.29 | 3.30 | 7.59 | 63.80 | — | — |
44.46 | 18 | — | — | 25.91 | 3.01 | 6.57 | 62.86 | — | 1.64 | |
88.63 | 24 | — | — | 37.14 | 13.37 | 4.73 | 4.44 | 12.42 | 27.87 | |
ZSM-5 | 17.25 | 12 | 302 | 75 | 40.75 | 16.98 | 25.51 | 16.75 | — | — |
23.26 | 18 | — | — | 49.22 | 25.92 | 18.57 | 6.32 | — | — | |
23.97 | 24 | — | — | 24.48 | 26.41 | 16.85 | 5.59 | — | — | |
Al-MCM-41 | — | 24 | 996 | 82 | — | — | — | — | — | — |
MCM-41 | — | 24 | 1075 | ∞ | — | — | — | — | — | — |
Table 1 Catalytic activity for cracking of 1,3,5-triisopropylbenzene and the structural parameters for various samples[a][51]
Conv /% | Contact time /ms | BET surface area /(m2•g-1) | Si/Al | Product distribution/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |||||
MMM(2) | 28.59 | 12 | 562 | 80 | 25.29 | 3.30 | 7.59 | 63.80 | — | — |
44.46 | 18 | — | — | 25.91 | 3.01 | 6.57 | 62.86 | — | 1.64 | |
88.63 | 24 | — | — | 37.14 | 13.37 | 4.73 | 4.44 | 12.42 | 27.87 | |
ZSM-5 | 17.25 | 12 | 302 | 75 | 40.75 | 16.98 | 25.51 | 16.75 | — | — |
23.26 | 18 | — | — | 49.22 | 25.92 | 18.57 | 6.32 | — | — | |
23.97 | 24 | — | — | 24.48 | 26.41 | 16.85 | 5.59 | — | — | |
Al-MCM-41 | — | 24 | 996 | 82 | — | — | — | — | — | — |
MCM-41 | — | 24 | 1075 | ∞ | — | — | — | — | — | — |
[1] | MISAELIDES P.Application of natural zeolites in environmental remediation: a short review.Microporous and Mesoporous Materials, 2011, 144(1): 15-18. |
[2] | PREZ-RAMREZ J, CHRISTENSEN C H, EGEBLAD K, et al.Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design.Chemical Society Reviews, 2008, 37(11): 2530-2542. |
[3] | WECKHUYSEN B M, YU J.Recent advances in zeolite chemistry and catalysis.Chemical Society Reviews, 2015, 44(20): 7022-7024. |
[4] | BECK J, VARTULI J, ROTH, W J, et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates.Journal of the American Chemical Society, 1992, 114(27): 10834-10843. |
[5] | YANG Q H, LIU J, ZHONG H, et al.Progress in the periodic mesoporous organosilicas.Journal of Inorganic Materials, 2009, 24(4): 641-649. |
[6] | CHEN J H, WANG F, CHENG N S, et al.Characterization and antibacterial ability of copper-modified hexagonal mesoporous silica in situ.Journal of Inorganic Materials, 2009, 24(4): 695-701. |
[7] | SUN Y, PRINS R.Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites.Angewandte Chemie International Edition, 2008, 47(44): 8478-8481. |
[8] | VAN DONK S, BROERSMA A, GIJZEMAN O, et al.Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance.Journal of Catalysis, 2001, 204(2): 272-280. |
[9] | XIN H, KOEKKOEK A, YANG Q, et al.A hierarchical Fe/ZSM-5 zeolite with superior catalytic performance for benzene hydroxylation to phenol.Chemical Communications, 2009, 48: 7590-7592. |
[10] | ZHOU X, CHEN H, CUI X, et al.A facile one-pot synthesis of hierarchically porous Cu (I)-ZSM-5 for radicals-involved oxidation of cyclohexane.Applied Catalysis A: General, 2013, 451: 112-119. |
[11] | BAI R, SUN Q, WANG N, et al.Simple quaternary ammonium cations-templated syntheses of extra-large pore germanosilicate zeolites.Chemistry of Materials, 2016, 28(18): 6455-6458. |
[12] | CHAL R, GERARDIN C, BULUT M, et al.Overview and industrial assessment of synthesis strategies towards zeolites with mesopores.ChemCatChem, 2011, 3(1): 67-81. |
[13] | CHOI M, CHO H S, SRIVASTAVA R, et al.Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.Nature Materials, 2006, 5(9): 718-723. |
[14] | GE T, HUA Z, HE X, et al.On the mesoporogen-free synthesis of single-crystalline hierarchically structured ZSM-5 zeolites in a quasi-solid-state system.Chemistry-A European Journal, 2016, 22(23): 7895-7905. |
[15] | HUANG L, WANG Z, SUN J, et al.Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals.Journal of the American Chemical Society, 2000, 122(14): 3530-3531. |
[16] | JACOBSEN C J, MADSEN C, HOUZVICKA J, et al.Mesoporous zeolite single crystals.Journal of the American Chemical Society, 2000, 122(29): 7116-7117. |
[17] | KIM Y, KIM K, RYOO R.Cooperative structure direction of diammonium surfactants and sodium ions to generate MFI zeolite nanocrystals of controlled thickness.Chemistry of Materials, 2017, 29(4): 1752-1757. |
[18] | SERRANO D P, AGUADO J, ESCOLA J M, et al.Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds.Chemistry of Materials, 2006, 18(10): 2462-2464. |
[19] | TAO Y, KANOH H, ABRAMS L, et al.Mesopore-modified zeolites: preparation, characterization, and applications.Chemical Reviews, 2006, 106(3): 896-910. |
[20] | ZHOU Z H, LU J M, WU S F, et al.Synthesis of MCM-48/ZSM-5 composite molecular sieve by two-step crystallization.Journal of Inorganic Materials, 2009, 24(2): 325-329. |
[21] | GROEN J C, ABELL S, VILLAESCUSA L A, et al.Mesoporous beta zeolite obtained by desilication.Microporous and Mesoporous materials, 2008, 114(1): 93-102. |
[22] | GROEN J C, MOULIJN J A, PEREZ-RAMIREZ J, et al.Desilication: on the controlled generation of mesoporosity in MFI zeolites.Journal of Materials Chemistry, 2006, 16: 2121-2131. |
[23] | SONG Y, HUA Z, ZHU Y, et al.Solvent-free liquid phase tert-butylation of phenol over hierarchical ZSM-5 zeolites for the efficient production of 2, 4-ditert-butylphenol.Journal of Materials Chemistry, 2012, 22(8): 3327-3329. |
[24] | ZHOU J, HUA Z, CUI X, et al.Hierarchical mesoporous TS-1 zeolite: a highly active and extraordinarily stable catalyst for the selective oxidation of 2, 3, 6-trimethylphenol.Chemical Communications, 2010, 46(27): 4994-4996. |
[25] | ZHOU J, HUA Z, LIU Z, et al.Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties.ACS Catalysis, 2011, 1(4): 287-291. |
[26] | ZHOU J, HUA Z, SHI J, et al.Synthesis of a hierarchical micro/mesoporous structure by steam-assisted post-crystallization.Chemistry-A European Journal, 2009, 15(47): 12949-12954. |
[27] | ZHU Y, HUA Z, ZHOU X, et al.CTAB-templated mesoporous TS-1 zeolites as active catalysts in a desulfurization process: the decreased hydrophobicity is more favourable in thiophene oxidation.RSC Advances, 2013, 3(13): 4193-4198. |
[28] | AZHATI A, XIE S, WANG W, et al.Ordered, highly zeolitized mesoporous aluminosilicates produced by a gradient acidic assembly growth strategy in a mixed template system.Chemistry of Materials, 2016, 28(13): 4859-4866. |
[29] | WHITE R J, FISCHER A, GOEBEL C, et al.A sustainable template for mesoporous zeolite synthesis.Journal of the American Chemical Society, 2014, 136(7): 2715-2718. |
[30] | ZHU J, ZHU Y, ZH, L, et al.Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template.Journal of the American Chemical Society, 2014, 136(6): 2503-2510. |
[31] | ZHU K, EGEBLAD K, CHRISTENSEN C H.Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites.European Journal of Inorganic Chemistry, 2007, 2007(25): 3955-3960. |
[32] | SONG Y, HUA Z, ZHU Y, et al.An in situ carbonaceous mesoporous template for the synthesis of hierarchical ZSM-5 zeolites by one-pot steam-assisted crystallization.Chemistry-An Asian Journal, 2012, 7(12): 2772-2776. |
[33] | BOISEN A, SCHMIDT I, CARLSSON A, et al.TEM stereo- imaging of mesoporous zeolite single crystals.Chemical Communications, 2003, 8: 958-959. |
[34] | CHOI M, NA K, KIM J, et al.Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts.Nature, 2009, 461(7261): 246-249. |
[35] | ZHU H, LIU Z, WANG Y, et al.Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal.Chemistry of Materials, 2007, 20(3): 1134-1139. |
[36] | XIAO F S, WANG L, YIN C, et al.Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers.Angewandte Chemie, 2006, 118(19): 3162-3165. |
[37] | WANG L, YIN C, SHAN Z, et al.Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 340(1): 126-130. |
[38] | MENG X, NAWAZ F, XIAO F S.Templating route for synthesizing mesoporous zeolites with improved catalytic properties.Nano Today, 2009, 4(4): 292-301. |
[39] | GE T, HUA Z, LV J, et al.Hydrophilicity/hydrophobicity modulated synthesis of nano-crystalline and hierarchically structured TS-1 zeolites.CrystEngComm, 2017, 19(10): 1370-1376. |
[40] | ZHOU X, CHEN H, SUN Y, et al.Highly efficient light-induced hydrogen evolution from a stable Pt/CdS NPs-co-loaded hierarchically porous zeolite beta.Applied Catalysis B: Environmental, 2014, 152: 271-279. |
[41] | ZHU Y, HUA Z, ZHOU J, et al.Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation.Chemistry-A European Journal, 2011, 17(51): 14618-14627. |
[42] | XU D, JING Z, CAO F, et al.Surfactants with aromatic-group tail and single quaternary ammonium head for directing single- crystalline mesostructured zeolite nanosheets.Chemistry of Materials, 2014, 26(15): 4612-4619. |
[43] | XU D, MA Y, JING Z, et al.π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets.Nature communications, 2014, 5: 4262-4270. |
[44] | ZHOU X, CHEN H, ZHU Y, et al.Dual-mesoporous ZSM-5 zeolite with highly b-axis-oriented large mesopore channels for the production of benzoin ethyl ether.Chemistry-A European Journal, 2013, 19(30): 10017-10023. |
[45] | SHAN Z, WANG H, MENG X, et al.Designed synthesis of TS-1 crystals with controllable b-oriented length.Chemical Communications, 2011, 47(3): 1048-1050. |
[46] | 周健. 蒸汽辅助晶化法制备介孔沸石分子筛及其催化性能研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2011. |
[47] | ZHAO J, HUA Z, LIU Z, et al. Direct fabrication of mesoporous zeolite with a hollow capsular structure.Chemical Communications, 2009(48): 7578-7580. |
[48] | INAYAT A, KNOKE I, SPIECKER E, et al.Assemblies of mesoporous FAU-type zeolite nanosheets.Angewandte Chemie International Edition, 2012, 51(8): 1962-1965. |
[49] | DONG A, WANG Y, TANG Y, et al.Zeolitic tissue through wood cell templating.Advanced Materials, 2002, 14(12): 926-929. |
[50] | TAN Q, BAO X, SONG T, et al.Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-microporous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin.Journal of Catalysis, 2007, 251(1): 69-79. |
[51] | YANG X Y, TIAN G, CHEN L H, et al.Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro- meso-macropore systems showing enhanced catalytic performance.Chemistry-A European Journal, 2011, 17(52): 14987-14995. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | FAN Xiaoxuan, ZHENG Yonggui, XU Lirong, YAO Zimin, CAO Shuo, WANG Kexin, WANG Jiwei. Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor [J]. Journal of Inorganic Materials, 2025, 40(5): 481-488. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | JIA Xianghua, ZHANG Huixia, LIU Yanfeng, ZUO Guihong. Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach [J]. Journal of Inorganic Materials, 2025, 40(4): 397-404. |
[11] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[12] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[13] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[14] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[15] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||