Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (2): 113-128.DOI: 10.15541/jim20170255
Special Issue: 环境材料优选论文
• Orginal Article • Previous Articles Next Articles
CHEN Hang-Rong, ZHOU Xiao-Xia, SHI Jian-Lin
Received:
2017-05-22
Revised:
2017-08-31
Published:
2018-02-26
Online:
2018-01-26
Supported by:
CLC Number:
CHEN Hang-Rong, ZHOU Xiao-Xia, SHI Jian-Lin. Research Progress on Hierarchically Porous Zeolites: Structural Control, Synthesis and Catalytic Applications[J]. Journal of Inorganic Materials, 2018, 33(2): 113-128.
Fig. 2 (a) Schematic illustration of hierarchical microporous- mesoporous zeolite crystals ZSM-5 in the presence of an carbon template, typical SEM (b) and TEM (c) images of the templated zeolites, including the electron diffraction pattern[2]
Fig. 3 (a) Schematic synthetic process of hierarchically porous zeolite ZSM-5; (b) FE-SEM image and SAED pattern of the hierarchically porous zeolite ZSM-5; (c) Time dependence of the anisole conversion over different catalysts for Friedel-Crafts acylation of anisole and acetyl chloride[32]
Fig. 4 Schematic illustration of mesoporous zeolite Beta by using cationic polymers, N2 adsorption/desorption isotherms and the corresponding pore-size distribution curve and TEM image of mesoporous zeolite Beta[36,38]
Fig. 5 (a) Formation of ordered mesoporous materials between primary units and CTAB; (b) Amorphous mesophase or a mixture of the mesophse and pure zeolite crystals formed by the assembly between oligomers/nanoparticles and CTAB during room temperature aging; (c) The synthesis of hierarchical mesoporous zeolites (HMZ) by using zeolite subnanocrystal precursor to assemble with CTAB; (d) The formation of nanozeolite aggregates due to size-mismatch between nanocrystals and CTAB[41]
Fig. 6 SEM (a, b), TEM (c), and HR-TEM (d) images of hierarchical mesoporous ZSM-5 zeolites through co-templating of CTAB and F127, and (e) is the corresponding SAED pattern taken from the whole particle in image (c)[41]
Fig. 8 (a) Single quaternary ammoniums in the template molecules are located in the straight channel and serve as a template to direct the formation of SCZN; (b) SEM images of as-made samples by using different hydrophobic carbon chain, BCPh-n-6-6; (c) High-resolution transmission electron microscopy (HRTEM) images of as-made SCZN-2 templated by BCPh-6-6-6; (d) Pore properties of calcined SCZN-2[43]
Fig. 9 (A) Schematic drawing of the formation mechanism of sample ZSM-5-ODM; (B) N2 adsorption/desorption isotherms and corresponding BJH pore diameter distribution curves of the sample ZSM-5-ODM; (C) Low and high-magnification FE-SEM images of ZSM-5-ODM with an inset in (e) showing high-resolution image on particular sections; (f)Typical HR-TEM image of ZSM-5-ODM and the corresponding selected area electron diffraction (SAED) pattern (inset)[44]
Fig. 10 Chemical reaction illustration for the condensation of benzaldehyde with ethanol and the effect of reaction time on the conversion of benzaldehyde over the different samples[44]
Fig. 11 (a-e) TEM images of HMZS at different magnifications and its electron diffraction pattern; (f) XRD patterns, (g-h) N2 sorption isotherms and pore size distributions of MZS (●), HMZS (▲) and conventional ZSM-5 zeolite (■). Isotherms of MZS and HMZS are offset by 100 and 200 cm3/g[46]
Fig. 14 SEM (a), TEM (b, c) and HR-TEM (d) images of MZ-HCS. Inset in (a) is a deliberately selected capsule with a broken shell; the HR-TEM image was taken from the area in the black square of (c); (e-f) 27Al and 29Si MAS NMR spectra of (A) AAS and (B) MZ-HCS[47]
Fig. 16 Schematic representation of the synthesis of hierarchically micro-meso-macroprous aluminosilicates (left), and TEM investigation of the formation of micro-meso-macroporous aluminosilicate (right)[51]
Conv /% | Contact time /ms | BET surface area /(m2•g-1) | Si/Al | Product distribution/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |||||
MMM(2) | 28.59 | 12 | 562 | 80 | 25.29 | 3.30 | 7.59 | 63.80 | — | — |
44.46 | 18 | — | — | 25.91 | 3.01 | 6.57 | 62.86 | — | 1.64 | |
88.63 | 24 | — | — | 37.14 | 13.37 | 4.73 | 4.44 | 12.42 | 27.87 | |
ZSM-5 | 17.25 | 12 | 302 | 75 | 40.75 | 16.98 | 25.51 | 16.75 | — | — |
23.26 | 18 | — | — | 49.22 | 25.92 | 18.57 | 6.32 | — | — | |
23.97 | 24 | — | — | 24.48 | 26.41 | 16.85 | 5.59 | — | — | |
Al-MCM-41 | — | 24 | 996 | 82 | — | — | — | — | — | — |
MCM-41 | — | 24 | 1075 | ∞ | — | — | — | — | — | — |
Table 1 Catalytic activity for cracking of 1,3,5-triisopropylbenzene and the structural parameters for various samples[a][51]
Conv /% | Contact time /ms | BET surface area /(m2•g-1) | Si/Al | Product distribution/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |||||
MMM(2) | 28.59 | 12 | 562 | 80 | 25.29 | 3.30 | 7.59 | 63.80 | — | — |
44.46 | 18 | — | — | 25.91 | 3.01 | 6.57 | 62.86 | — | 1.64 | |
88.63 | 24 | — | — | 37.14 | 13.37 | 4.73 | 4.44 | 12.42 | 27.87 | |
ZSM-5 | 17.25 | 12 | 302 | 75 | 40.75 | 16.98 | 25.51 | 16.75 | — | — |
23.26 | 18 | — | — | 49.22 | 25.92 | 18.57 | 6.32 | — | — | |
23.97 | 24 | — | — | 24.48 | 26.41 | 16.85 | 5.59 | — | — | |
Al-MCM-41 | — | 24 | 996 | 82 | — | — | — | — | — | — |
MCM-41 | — | 24 | 1075 | ∞ | — | — | — | — | — | — |
[1] | MISAELIDES P.Application of natural zeolites in environmental remediation: a short review.Microporous and Mesoporous Materials, 2011, 144(1): 15-18. |
[2] | PREZ-RAMREZ J, CHRISTENSEN C H, EGEBLAD K, et al.Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design.Chemical Society Reviews, 2008, 37(11): 2530-2542. |
[3] | WECKHUYSEN B M, YU J.Recent advances in zeolite chemistry and catalysis.Chemical Society Reviews, 2015, 44(20): 7022-7024. |
[4] | BECK J, VARTULI J, ROTH, W J, et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates.Journal of the American Chemical Society, 1992, 114(27): 10834-10843. |
[5] | YANG Q H, LIU J, ZHONG H, et al.Progress in the periodic mesoporous organosilicas.Journal of Inorganic Materials, 2009, 24(4): 641-649. |
[6] | CHEN J H, WANG F, CHENG N S, et al.Characterization and antibacterial ability of copper-modified hexagonal mesoporous silica in situ.Journal of Inorganic Materials, 2009, 24(4): 695-701. |
[7] | SUN Y, PRINS R.Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites.Angewandte Chemie International Edition, 2008, 47(44): 8478-8481. |
[8] | VAN DONK S, BROERSMA A, GIJZEMAN O, et al.Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance.Journal of Catalysis, 2001, 204(2): 272-280. |
[9] | XIN H, KOEKKOEK A, YANG Q, et al.A hierarchical Fe/ZSM-5 zeolite with superior catalytic performance for benzene hydroxylation to phenol.Chemical Communications, 2009, 48: 7590-7592. |
[10] | ZHOU X, CHEN H, CUI X, et al.A facile one-pot synthesis of hierarchically porous Cu (I)-ZSM-5 for radicals-involved oxidation of cyclohexane.Applied Catalysis A: General, 2013, 451: 112-119. |
[11] | BAI R, SUN Q, WANG N, et al.Simple quaternary ammonium cations-templated syntheses of extra-large pore germanosilicate zeolites.Chemistry of Materials, 2016, 28(18): 6455-6458. |
[12] | CHAL R, GERARDIN C, BULUT M, et al.Overview and industrial assessment of synthesis strategies towards zeolites with mesopores.ChemCatChem, 2011, 3(1): 67-81. |
[13] | CHOI M, CHO H S, SRIVASTAVA R, et al.Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.Nature Materials, 2006, 5(9): 718-723. |
[14] | GE T, HUA Z, HE X, et al.On the mesoporogen-free synthesis of single-crystalline hierarchically structured ZSM-5 zeolites in a quasi-solid-state system.Chemistry-A European Journal, 2016, 22(23): 7895-7905. |
[15] | HUANG L, WANG Z, SUN J, et al.Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals.Journal of the American Chemical Society, 2000, 122(14): 3530-3531. |
[16] | JACOBSEN C J, MADSEN C, HOUZVICKA J, et al.Mesoporous zeolite single crystals.Journal of the American Chemical Society, 2000, 122(29): 7116-7117. |
[17] | KIM Y, KIM K, RYOO R.Cooperative structure direction of diammonium surfactants and sodium ions to generate MFI zeolite nanocrystals of controlled thickness.Chemistry of Materials, 2017, 29(4): 1752-1757. |
[18] | SERRANO D P, AGUADO J, ESCOLA J M, et al.Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds.Chemistry of Materials, 2006, 18(10): 2462-2464. |
[19] | TAO Y, KANOH H, ABRAMS L, et al.Mesopore-modified zeolites: preparation, characterization, and applications.Chemical Reviews, 2006, 106(3): 896-910. |
[20] | ZHOU Z H, LU J M, WU S F, et al.Synthesis of MCM-48/ZSM-5 composite molecular sieve by two-step crystallization.Journal of Inorganic Materials, 2009, 24(2): 325-329. |
[21] | GROEN J C, ABELL S, VILLAESCUSA L A, et al.Mesoporous beta zeolite obtained by desilication.Microporous and Mesoporous materials, 2008, 114(1): 93-102. |
[22] | GROEN J C, MOULIJN J A, PEREZ-RAMIREZ J, et al.Desilication: on the controlled generation of mesoporosity in MFI zeolites.Journal of Materials Chemistry, 2006, 16: 2121-2131. |
[23] | SONG Y, HUA Z, ZHU Y, et al.Solvent-free liquid phase tert-butylation of phenol over hierarchical ZSM-5 zeolites for the efficient production of 2, 4-ditert-butylphenol.Journal of Materials Chemistry, 2012, 22(8): 3327-3329. |
[24] | ZHOU J, HUA Z, CUI X, et al.Hierarchical mesoporous TS-1 zeolite: a highly active and extraordinarily stable catalyst for the selective oxidation of 2, 3, 6-trimethylphenol.Chemical Communications, 2010, 46(27): 4994-4996. |
[25] | ZHOU J, HUA Z, LIU Z, et al.Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties.ACS Catalysis, 2011, 1(4): 287-291. |
[26] | ZHOU J, HUA Z, SHI J, et al.Synthesis of a hierarchical micro/mesoporous structure by steam-assisted post-crystallization.Chemistry-A European Journal, 2009, 15(47): 12949-12954. |
[27] | ZHU Y, HUA Z, ZHOU X, et al.CTAB-templated mesoporous TS-1 zeolites as active catalysts in a desulfurization process: the decreased hydrophobicity is more favourable in thiophene oxidation.RSC Advances, 2013, 3(13): 4193-4198. |
[28] | AZHATI A, XIE S, WANG W, et al.Ordered, highly zeolitized mesoporous aluminosilicates produced by a gradient acidic assembly growth strategy in a mixed template system.Chemistry of Materials, 2016, 28(13): 4859-4866. |
[29] | WHITE R J, FISCHER A, GOEBEL C, et al.A sustainable template for mesoporous zeolite synthesis.Journal of the American Chemical Society, 2014, 136(7): 2715-2718. |
[30] | ZHU J, ZHU Y, ZH, L, et al.Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template.Journal of the American Chemical Society, 2014, 136(6): 2503-2510. |
[31] | ZHU K, EGEBLAD K, CHRISTENSEN C H.Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites.European Journal of Inorganic Chemistry, 2007, 2007(25): 3955-3960. |
[32] | SONG Y, HUA Z, ZHU Y, et al.An in situ carbonaceous mesoporous template for the synthesis of hierarchical ZSM-5 zeolites by one-pot steam-assisted crystallization.Chemistry-An Asian Journal, 2012, 7(12): 2772-2776. |
[33] | BOISEN A, SCHMIDT I, CARLSSON A, et al.TEM stereo- imaging of mesoporous zeolite single crystals.Chemical Communications, 2003, 8: 958-959. |
[34] | CHOI M, NA K, KIM J, et al.Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts.Nature, 2009, 461(7261): 246-249. |
[35] | ZHU H, LIU Z, WANG Y, et al.Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal.Chemistry of Materials, 2007, 20(3): 1134-1139. |
[36] | XIAO F S, WANG L, YIN C, et al.Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers.Angewandte Chemie, 2006, 118(19): 3162-3165. |
[37] | WANG L, YIN C, SHAN Z, et al.Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 340(1): 126-130. |
[38] | MENG X, NAWAZ F, XIAO F S.Templating route for synthesizing mesoporous zeolites with improved catalytic properties.Nano Today, 2009, 4(4): 292-301. |
[39] | GE T, HUA Z, LV J, et al.Hydrophilicity/hydrophobicity modulated synthesis of nano-crystalline and hierarchically structured TS-1 zeolites.CrystEngComm, 2017, 19(10): 1370-1376. |
[40] | ZHOU X, CHEN H, SUN Y, et al.Highly efficient light-induced hydrogen evolution from a stable Pt/CdS NPs-co-loaded hierarchically porous zeolite beta.Applied Catalysis B: Environmental, 2014, 152: 271-279. |
[41] | ZHU Y, HUA Z, ZHOU J, et al.Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation.Chemistry-A European Journal, 2011, 17(51): 14618-14627. |
[42] | XU D, JING Z, CAO F, et al.Surfactants with aromatic-group tail and single quaternary ammonium head for directing single- crystalline mesostructured zeolite nanosheets.Chemistry of Materials, 2014, 26(15): 4612-4619. |
[43] | XU D, MA Y, JING Z, et al.π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets.Nature communications, 2014, 5: 4262-4270. |
[44] | ZHOU X, CHEN H, ZHU Y, et al.Dual-mesoporous ZSM-5 zeolite with highly b-axis-oriented large mesopore channels for the production of benzoin ethyl ether.Chemistry-A European Journal, 2013, 19(30): 10017-10023. |
[45] | SHAN Z, WANG H, MENG X, et al.Designed synthesis of TS-1 crystals with controllable b-oriented length.Chemical Communications, 2011, 47(3): 1048-1050. |
[46] | 周健. 蒸汽辅助晶化法制备介孔沸石分子筛及其催化性能研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2011. |
[47] | ZHAO J, HUA Z, LIU Z, et al. Direct fabrication of mesoporous zeolite with a hollow capsular structure.Chemical Communications, 2009(48): 7578-7580. |
[48] | INAYAT A, KNOKE I, SPIECKER E, et al.Assemblies of mesoporous FAU-type zeolite nanosheets.Angewandte Chemie International Edition, 2012, 51(8): 1962-1965. |
[49] | DONG A, WANG Y, TANG Y, et al.Zeolitic tissue through wood cell templating.Advanced Materials, 2002, 14(12): 926-929. |
[50] | TAN Q, BAO X, SONG T, et al.Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-microporous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin.Journal of Catalysis, 2007, 251(1): 69-79. |
[51] | YANG X Y, TIAN G, CHEN L H, et al.Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro- meso-macropore systems showing enhanced catalytic performance.Chemistry-A European Journal, 2011, 17(52): 14987-14995. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[5] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[6] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[7] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[8] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[9] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[10] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[11] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[12] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[13] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[14] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[15] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||