Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (5): 454-460.DOI: 10.15541/jim20150486
• Orginal Article • Previous Articles Next Articles
WANG Xiao-Ning1,2, MENG Hu1,2, MA Fu-Yin1,2, LI Zheng2, ZHANG Lan2
Received:
2015-10-10
Revised:
2016-01-14
Published:
2016-05-20
Online:
2016-04-25
About author:
WANG Xiao-Ning. E-mail: wangxiaoning@sinap.ac.cn
Supported by:
CLC Number:
WANG Xiao-Ning, MENG Hu, MA Fu-Yin, LI Zheng, ZHANG Lan. Influence of Preparation Method on Oxidation Degree of Graphene Oxide and Adsorption for Th (IV) and U(VI)[J]. Journal of Inorganic Materials, 2016, 31(5): 454-460.
C=C/% | C-O/% | C=O/% | O=C-O/% | C/O* | |
---|---|---|---|---|---|
HGO | 54.8 | 30.8 | 10.4 | 4.0 | 2.36 |
IGO | 49.3 | 34.1 | 8.7 | 7.9 | 1.91 |
MGO | 53.2 | 30.4 | 9.4 | 7.0 | 2.14 |
Table1 C1s XPS results of HGO, IGO and MGO
C=C/% | C-O/% | C=O/% | O=C-O/% | C/O* | |
---|---|---|---|---|---|
HGO | 54.8 | 30.8 | 10.4 | 4.0 | 2.36 |
IGO | 49.3 | 34.1 | 8.7 | 7.9 | 1.91 |
MGO | 53.2 | 30.4 | 9.4 | 7.0 | 2.14 |
C/% | H/% | O/% | |
---|---|---|---|
HGO | 47.72 | 2.37 | 49.91 |
IGO | 40.67 | 2.43 | 56.90 |
MGO | 41.95 | 2.40 | 55.65 |
Table 2 Element analysis results of HGO, IGO and MGO
C/% | H/% | O/% | |
---|---|---|---|
HGO | 47.72 | 2.37 | 49.91 |
IGO | 40.67 | 2.43 | 56.90 |
MGO | 41.95 | 2.40 | 55.65 |
Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|
Qmax/(mg·g-1) | KL/(L·mg-1) | R2 | KF/(mg1-n·Ln·g-1) | 1/n | R2 | ||
U(VI) | HGO | 121.9 | 0.3306 | 0.997 | 48.11 | 0.2207 | 0.972 |
IGO | 156.2 | 0.1688 | 0.994 | 31.43 | 0.3987 | 0.963 | |
MGO | 161.2 | 0.1294 | 0.993 | 32.48 | 0.3801 | 0.973 | |
Th(IV) | HGO | 138.8 | 0.4199 | 0.984 | 53.54 | 0.2279 | 0.973 |
IGO | 192.3 | 0.6753 | 0.991 | 93.13 | 0.1786 | 0.971 | |
MGO | 188.6 | 0.5773 | 0.975 | 61.86 | 0.2981 | 0.976 |
Table 3 Parameters for the Langmuir and Freundlich models of U(VI) and Th(IV) sorption
Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|
Qmax/(mg·g-1) | KL/(L·mg-1) | R2 | KF/(mg1-n·Ln·g-1) | 1/n | R2 | ||
U(VI) | HGO | 121.9 | 0.3306 | 0.997 | 48.11 | 0.2207 | 0.972 |
IGO | 156.2 | 0.1688 | 0.994 | 31.43 | 0.3987 | 0.963 | |
MGO | 161.2 | 0.1294 | 0.993 | 32.48 | 0.3801 | 0.973 | |
Th(IV) | HGO | 138.8 | 0.4199 | 0.984 | 53.54 | 0.2279 | 0.973 |
IGO | 192.3 | 0.6753 | 0.991 | 93.13 | 0.1786 | 0.971 | |
MGO | 188.6 | 0.5773 | 0.975 | 61.86 | 0.2981 | 0.976 |
Fig. 4 Adsorption isotherms of U(VI) (a) and Th(IV) (b) on the HGO, IGO and MGO C(GO)=0.3 g/L, C(U)=0.05-0.5 mmol/L, pH=4±0.05 (a) and C (Th)= 0.05-0.5 mmol/L (b), pH=3±0.05, (T=298.15 K, t=12 h)
Fig. 5 Adsorption of Th(IV) and U(VI) on IGO at a function of pH C(GO)=0.4 g/L, C(Th)=0.5 mmol/L, T=298.15 K, t=12 h; C(GO)=0.4 g/L, C(U)= 0.5 mmol/L, T=298.15 K, t=12 h
Fig. 7 Effect of contact time (a) and temperature (b) on the Th(IV) and U(VI) adsorption on IGO C(GO)=0.4 g/L,C(Th)=0.5 mmol/L, pH=3±0.05,T=298.15 K; C(GO)= 0.4 g/L,C(U)= 0.5 mmol/L, pH=4±0.05, T=298.15 K
Temp./K | ΔH0/ (kJ•mol-1) | ΔS0/ (J•mol-1•K-1) | ΔG0/ (kJ•mol-1) | |
---|---|---|---|---|
Th(IV) | 300 | 5.43 | 92.05 | -22.18 |
308 | -22.92 | |||
318 | -23.84 | |||
328 | -24.76 | |||
338 | -25.68 | |||
U(VI) | 300 | 3.23 | 80.72 | -20.98 |
308 | -21.62 | |||
318 | -22.43 | |||
328 | -23.24 | |||
338 | -24.05 |
Table 4 Thermodynamic parameters of Th(IV) and U(VI) adsorption on IGO
Temp./K | ΔH0/ (kJ•mol-1) | ΔS0/ (J•mol-1•K-1) | ΔG0/ (kJ•mol-1) | |
---|---|---|---|---|
Th(IV) | 300 | 5.43 | 92.05 | -22.18 |
308 | -22.92 | |||
318 | -23.84 | |||
328 | -24.76 | |||
338 | -25.68 | |||
U(VI) | 300 | 3.23 | 80.72 | -20.98 |
308 | -21.62 | |||
318 | -22.43 | |||
328 | -23.24 | |||
338 | -24.05 |
[1] | CHAPMAN N, HOOPER A.The disposal of radioactive wastes underground.Proceedings of the Geologists Association, 2012, 123(1): 46-63. |
[2] | EJNIK J W, TODOROV T I, MULLICK F G, et al.Uranium analysis in urine by inductively coupled plasma dynamic reaction cell mass spectrometry.Analytical &Bioanalytical Chemistry, 2005, 382(1): 73-79. |
[3] | LIAO XUE-PIN, LU ZHONG-BI, DU XIAO, et al.Collagen fiber immobilized Myricarubra tannin and its adsorption to UO22+.Environmental Science & Technology, 2004, 38(1): 324-328. |
[4] | YAKOUT S M, METWALLY S S, EL-ZAKLA T.Uranium sorption onto activated carbon prepared from rice straw: competition with humic acids.Applied Surface Science, 2013, 280(8): 745-750. |
[5] | FASFOUS I I, DAWOUD J N.Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution.Applied Surface Science, 2012, 259(2): 433-440. |
[6] | ZHAO GUI-XIA, LIJIA-XING, RENXUE-MEI, et al.Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management.Environmental Science & Technology, 2011, 45(24): 10454-10462. |
[7] | ZHAO GUI-XIA, REN XUE-MEI, GAO XING, et al.Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets.Dalton Transactions, 2011, 40(41): 10945-10952. |
[8] | LIAN PEI-CHAO, ZHU XUE-FENG, LIANG SHU-ZHAO, et al.Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries.Electrochimica Acta, 2010, 55(12): 3909-3914. |
[9] | LI YAN, WANG CHUN-LI, GUOZHI-JUN, et al.Sorption of thorium(IV) from aqueous solutions by graphene oxide.Journal of Radio Analytical& Nuclear Chemistry, 2014, 299. |
[10] | ZHAO GUI-XIA, WEN TAO, YANG XIN, et al.Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions.Dalton Transactions, 2012, 41(20): 6182-6188. |
[11] | YANG SHUANG, LI LING-YUN, PEI ZHI-GUO, et al.Effects of humic acid on copper adsorption onto few-layer reduced graphene oxide and few-layer graphene oxide.Carbon, 2014, 75(10): 227-235. |
[12] | WANG XIANG-XUE, CHENZHONG-SHAN, YANGSHU-BING.Application of graphene oxides for the removal of Pb(II) ions from aqueous solutions: Experimental and DFT calculation. Journal of Molecular Liquids, 2015, 211: 957-964. |
[13] | DANIELAC MARCANO, DMITRYV KOSYNKIN, JACOB M.BERLIN, et al. Improved synthesis of grapheneoxide.ACS Nano, 2010(4): 4806-4814. |
[14] | PENG CHENG, HU WEN-BIN, ZHOU YUN-TAO, et al.Intracellular imaging with a graphene-based fluorescent probe.Small, 2010, 6(15): 1686-1692. |
[15] | SHEN JIAN-FENG, HU YI-ZHE, SHI MIN, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets.Chemistry of Materials, 2009(15): 3514-3520. |
[16] | MOO J G S, KHEZRI B, WEBSTER R D, et al. Graphene oxides prepared by Hummers’, Hofmann’s, and Staudenmaier’s methods:Dramatic Influences on Heavy-Metal-Ion Adsorption. Chemphyschem, 2014, 15(14): 2922-2929. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[3] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[4] | HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2024, 39(8): 887-894. |
[5] | WANG Xuchang, JIAO Chuyu, JI Zhuo, JIAO Qirui, QIN Bo, DU Yanze, ZHENG Jiajun, LI Ruifeng. Polycrystalline ZSM-5 Aggregates Induced by Seed and Catalytic Performance in Methanol to Hydrocarbon [J]. Journal of Inorganic Materials, 2024, 39(8): 945-954. |
[6] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[7] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[8] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[9] | SHI Tong, GAN Qiaowei, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Boost Electrochemical Reduction of CO2 to Formate Using a Self-supporting Bi@Cu Nanotree Electrode [J]. Journal of Inorganic Materials, 2024, 39(7): 810-818. |
[10] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[11] | ZHENG Zhongqiu, WEI Qinhua, TONG Yufeng, TANG Gao, YIN Hang, QIN Laishun. Effect of Zr4+ Co-doping on Neutron/Gamma Discrimination of Cs2LaLiBr6:Ce Crystals [J]. Journal of Inorganic Materials, 2024, 39(5): 539-546. |
[12] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[13] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
[14] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[15] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||