Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (9): 913-918.DOI: 10.15541/jim20140671
• Orginal Article • Previous Articles Next Articles
MA Guo-Qiang, WEN Zhao-Yin, WANG Qing-Song, JIN Jun, WU Xiang-Wei, ZHANG Jing-Chao
Received:
2014-12-25
Revised:
2015-03-18
Published:
2015-09-20
Online:
2015-08-19
About author:
MA Guo-Qiang. E-mail: guoqiangma@student.sic.ac.cn
Supported by:
CLC Number:
MA Guo-Qiang, WEN Zhao-Yin, WANG Qing-Song, JIN Jun, WU Xiang-Wei, ZHANG Jing-Chao. Effects of CeO2 Nano-crystal on Electrochemical Properties of Lithium/Sulfur Batteries[J]. Journal of Inorganic Materials, 2015, 30(9): 913-918.
Fig. 4 SEM morphologies of sulfur electrodes (a) before cycling, (b) without CeO2 after 50 cycles, (c) with CeO2 before cycling and (d) with CeO2 after 50 cycles
[1] | MANTHIRAM A, FU Y, SU Y S.Challenges and prospects of lithium/sulfur batteries.Accounts Chem. Res., 2012, 46(5): 1125-1134. |
[2] | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al.Li-O2 and Li-S batteries with high energy storage.Nat. Mater., 2012, 11(1): 19-29. |
[3] | ZHANG S S.Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions.J. Power Sources, 2013, 231: 153-162. |
[4] | KIM H, LIM H D, KIM J, et al.Graphene for advanced Li/S and Li/air batteries.Journal of Materials Chemistry A, 2014, 2: 33-47. |
[5] | Evers S, Nazar L F.New approaches for high energy density lithium/ sulfur battery cathodes.Accounts Chem. Res., 2012, 46(5): 1135-1143. |
[6] | SUO L, HU Y S, LI H, et al.A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.Nature Communications, 2013, 4: 1481-1489. |
[7] | ZHENG J, GU M, WANG C, et al.Controlled nucleation and growth process of Li2S2/Li2S in lithium-sulfur batteries.Journal of the Electrochemical Society, 2013, 160: A1992-A1996. |
[8] | ZHENG J, LV D, GU M, et al.How to obtain reproducible results for lithium sulfur batteries?Journal of the Electrochemical Society, 2013, 160: A2288-A2292. |
[9] | YANG Y, ZHENG G, CUI Y.Nanostructured sulfur cathodes.Chem. Soc. Rev., 2013, 42: 3018-3032. |
[10] | FU Y, SU Y S, MANTHIRAM A.Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.Acs. Appl. Mater. Inter., 2012, 4: 6046-6052. |
[11] | ZHAO C, LIU L, ZHAO H, et al.Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.Nanoscale, 2014, 6(2): 882-888. |
[12] | YANG Y, YU G, CHA J J, et al.Improving the performance of lithium-sulfur batteries by conductive polymer coating.Acs Nano, 2011, 5: 9187-9193. |
[13] | LIANG X, LIU Y, WEN Z, et al.A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries.J. Power Sources, 2011, 196: 6951-6955. |
[14] | SU Y S, MANTHIRAM A.A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer.Chem. Commun., 2012, 48: 8817-8819. |
[15] | CHEN J J, JIA X, SHE Q J, et al.The preparation of nano-sulfur/ MWCNTs and its electrochemical performance.Electrochim Acta, 2010, 55: 8062-8066. |
[16] | YIN L C, WANG J L, YANG J, et al.A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries.J. Mater. Chem., 2011, 21: 6807-6810. |
[17] | ZHENG G, ZHANG Q, CHA J J, et al.Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries.Nano Lett., 2013, 13(3): 1265-1270. |
[18] | JAYAPRAKASH N, SHEN J, MOGANTY S S, et al.A. porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries.Angewandte Chemie International Edition, 2011, 123(26): 6026-6030. |
[19] | ZHANG K, ZHAO Q, TAO Z, et al.Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance.Nano Res., 2012, 6: 38-46. |
[20] | SEH Z W, LI W, CHA J J, et al.Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium- sulphur batteries.Nature Communications, 2013, 4: 1331-1336. |
[21] | LI J, DING B, XU G, et al.Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li-S batteries.Nanoscale, 2013, 5(13): 5743-5746. |
[22] | ZHANG Y, ZHAO Y, KONAROV A, et al.One-pot approach to synthesize PPy@S core-shell nanocomposite cathode for Li/S batteries.J. Nanopart Res., 2013, 15(10): 1-7. |
[23] | ZHOU W, YU Y, CHEN H, et al.Yolk-shell structure of polyaniline coated sulfur for lithium-sulfur batteries.J. Am. Chem. Soc., 2013, 135(44): 16736-16743. |
[24] | XIAO L, CAO Y, XIAO J, et al.A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life.Adv. Mater., 2012, 24: 1176-1181. |
[25] | WANG C, WAN W, CHEN J T, et al.Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. Journal of Materials Chemistry A, 2013, 1: 1716-1723. |
[26] | ZHANG Y, WANG L, ZHANG A, et al.Novel V2O5/S composite cathode material for the advanced secondary lithium batteries.Solid State Ionics, 2010, 181: 835-838. |
[27] | CHOI Y J, JUNG B S, LEE D J, et al.Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell.Phys Scripta, 2007, T129: 62-65. |
[28] | SONG M S, HAN S C, KIM H S, et al.Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries.Journal of the Electrochemical Society, 2004, 151: A791-A795. |
[29] | ZHANG Y, WU X, FENG H, et al.Effect of nanosized Mg0.8Cu0.2O on electrochemical properties of Li/S rechargeable batteries.Int. J. Hydrogen. Energ., 2009, 34: 1556-1559. |
[30] | XU R, BELHAROUAK I, ZHANG X, et al.New developments in lithium sulfur batteries[C]//SPIE defense, security, and sensing. International Society for Optics and Photonics, 2013, 10: 872804. |
[31] | EVERS S, YIM T, NAZAR L F.Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery.The Journal of Physical Chemistry C, 2012, 116: 19653-19658. |
[32] | LIANG X, WEN Z, LIU Y, et al.A composite of sulfur and polypyrrole-multi walled carbon combinatorial nanotube as cathode for Li/S battery.J. Power. Sources, 2012, 206: 409-413. |
[33] | LI G C, HU J J, LI G R, et al.Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery.J. Power Sources, 2013, 240: 598-605. |
[34] | ZHANG B, LAI C, ZHOU Z, et al.Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials.Electrochim Acta, 2009, 54: 3708-3713. |
[35] | ZHOU G, PEI S, LI L, et al.A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries.Adv. Mater., 2014, 26(4): 625-631. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[5] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[6] | WANG Xinling, ZHOU Na, TIAN Yawen, ZHOU Mingran, HAN Jingru, SHEN Yuansheng, HU Zhiyi, LI Yu. SnS2/ZIF-8 Derived Two-dimensional Porous Nitrogen-doped Carbon Nanosheets for Lithium-sulfur Batteries [J]. Journal of Inorganic Materials, 2023, 38(8): 938-946. |
[7] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[8] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
[9] | WANG Lukai, FENG Junzong, JIANG Yonggang, LI Liangjun, FENG Jian. Direct-ink-writing 3D Printing of Ceramic-based Porous Structures: a Review [J]. Journal of Inorganic Materials, 2023, 38(10): 1133-1148. |
[10] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[11] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[12] | JIANG Yiyi, SHEN Min, SONG Banxia, LI Nan, DING Xianghuan, GUO Leyi, MA Guoqiang. Effect of Dual-functional Electrolyte Additive on High Temperature and High Voltage Performance of Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(7): 710-716. |
[13] | NAN Bo, ZANG Jiadong, LU Wenlong, YANG Tingwang, ZHANG Shengwei, ZHANG Haibo. Recent Progress on Additive Manufacturing of Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(6): 585-595. |
[14] | CAO Jiwei, WANG Pei, LIU Zhiyuan, LIU Changyong, WU Jiamin, CHEN Zhangwei. Research Progress on Powder-based Laser Additive Manufacturing Technology of Ceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 241-254. |
[15] | LIU Haifang, SU Haijun, SHEN Zhonglin, JIANG Hao, ZHAO Di, LIU Yuan, ZHANG Jun, LIU Lin, FU Hengzhi. Research Progress on Ultrahigh Temperature Oxide Eutectic Ceramics by Laser Additive Manufacturing [J]. Journal of Inorganic Materials, 2022, 37(3): 255-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||