无机材料学报 ›› 2021, Vol. 36 ›› Issue (3): 277-282.DOI: 10.15541/jim20200254 CSTR: 32189.14.10.15541/jim20200254
所属专题: 【虚拟专辑】钙钛矿材料(2020~2021)
董正明1,2(), 李修2,3, 陈晨2(
), 曹明贺1(
), 易志国2
收稿日期:
2020-05-13
修回日期:
2020-09-04
出版日期:
2021-03-20
网络出版日期:
2020-10-10
通讯作者:
曹明贺, 教授. E-mail:
caominghe@whut.edu.cn作者简介:
董正明(1996-), 男, 硕士研究生. E-mail: dongzhengming_yzu@163.com
基金资助:
DONG Zhengming1,2(), LI Xiu2,3, CHEN Chen2(
), CAO Minghe1(
), YI Zhiguo2
Received:
2020-05-13
Revised:
2020-09-04
Published:
2021-03-20
Online:
2020-10-10
Contact:
CAO Minghe, professor. E-mail: caominghe@whut.edu.cnAbout author:
DONG Zhengming(1996-), male, Master candidate. E-mail: dongzhengming_yzu@163.com
Supported by:
摘要:
光致形变材料在光致驱动器和传感器等光机电领域有重要的应用前景。本研究采用放电等离子体烧结法制备了Ni掺杂Na0.5Bi0.5TiO3-BaTiO3(NBT-BT)陶瓷材料Na0.5Bi0.5TiO3-Ba(Ti0.5Ni0.5)O3 (NBT-BNT)。进一步研究发现样品在405、520及655 nm波长激光照射下均表现出10 -3数量级的光致形变响应, 其光致形变系数达到10 -11 m 3/W。通过研究NBT-BNT陶瓷在外加光源照射下的原位X射线衍射图谱, 发现所有衍射峰在可见光照射下均发生小角度的偏移, 说明光照引起的材料晶格畸变是NBT-BNT材料光致形变效应的主要原因。
中图分类号:
董正明, 李修, 陈晨, 曹明贺, 易志国. NBT-BNT陶瓷的光致形变性能[J]. 无机材料学报, 2021, 36(3): 277-282.
DONG Zhengming, LI Xiu, CHEN Chen, CAO Minghe, YI Zhiguo. Photostriction of NBT-BNT Ceramics[J]. Journal of Inorganic Materials, 2021, 36(3): 277-282.
图1 NBT-BNT与NBT-BT样品的XRD图谱(a~b)和NBT- BNT(c)和NBT-BT(d)陶瓷断面的SEM照片
Fig. 1 XRD patterns (a-b) of NBT-BNT and NBT-BT samples, cross sectional SEM images of NBT-BNT (c) and NBT-BT (d) ceramic
图3 NBT-BNT样品在不同光照条件下的光致形变性能(阴影部代表光照区间)(a), NBT-BNT样品分别在5 kW/cm2(b)和15 kW/cm2 (c)光强下的光致形变稳定性, NBT-BNT样品在不同光照条件下的光致形变系数(d), NBT-BNT样品在不同光照条件下(与(a)图相对应)的温度变化(e)和NBT-BNT样品的热膨胀曲线(f)
Fig. 3 Photostrictive performance of the NBT-BNT sample under different light conditions (shaded part indicates laser on state) (a), Stability of the photostrictive properties of the NBT-BNT sample under 5 kW/cm2 (b) and 15 kW/cm2 (c), photostriction coefficient of NBT-BNT sample under different light conditions (d), temperature change of the NBT-BNT sample (e) corresponding to Fig.(a), and thermal expansion curve of the NBT-BNT sample (f)
Compounds | Sample thickness | Illumination wavelength/nm | Light irradiance | λmax/% | η/(m3·W-1) |
---|---|---|---|---|---|
PLZT ceramics[ | 0.5 mm | 365 | 150 W/m2 | 0.01 | 3.3×10-10 |
BiFeO3 crystal[ | 90 µm | 365 | 326 W/m2 | 0.003 | 8.2×10-12 |
BiFeO3 film[ | 35 nm | 400 | 2 mJ/cm2 | 0.46 | 4×10-25 |
Silicon crystal[ | 0.5 mm | 248 | 127 mJ/cm2 | -6.4×10-4 | -3.7×10-20 |
Nematic elastomers[ | - | 365 | - | 20 | - |
SrRuO3 film[ | 40 nm | 532 | 62.5 W/cm2 | 1.12 | 7×10-16 |
CH3NH3PbBr3 crystal[ | 2.7 mm | 532 | 60 W/cm2 | -1.25 | -5.6×10-11 |
NBT-BNT | 0.2 mm | 405 | 25 kW/m2 | 0.21 | 1.68×10-11 |
0.2 mm | 520 | 25 kW/m2 | 0.13 | 1.10×10-11 | |
0.2 mm | 655 | 25 kW/m2 | 0.11 | 9.12×10-12 |
表1 部分光致形变形材料的性能对比
Table 1 Comparison of the photostrictive performances of the materials in literature and this work
Compounds | Sample thickness | Illumination wavelength/nm | Light irradiance | λmax/% | η/(m3·W-1) |
---|---|---|---|---|---|
PLZT ceramics[ | 0.5 mm | 365 | 150 W/m2 | 0.01 | 3.3×10-10 |
BiFeO3 crystal[ | 90 µm | 365 | 326 W/m2 | 0.003 | 8.2×10-12 |
BiFeO3 film[ | 35 nm | 400 | 2 mJ/cm2 | 0.46 | 4×10-25 |
Silicon crystal[ | 0.5 mm | 248 | 127 mJ/cm2 | -6.4×10-4 | -3.7×10-20 |
Nematic elastomers[ | - | 365 | - | 20 | - |
SrRuO3 film[ | 40 nm | 532 | 62.5 W/cm2 | 1.12 | 7×10-16 |
CH3NH3PbBr3 crystal[ | 2.7 mm | 532 | 60 W/cm2 | -1.25 | -5.6×10-11 |
NBT-BNT | 0.2 mm | 405 | 25 kW/m2 | 0.21 | 1.68×10-11 |
0.2 mm | 520 | 25 kW/m2 | 0.13 | 1.10×10-11 | |
0.2 mm | 655 | 25 kW/m2 | 0.11 | 9.12×10-12 |
图5 NBT-BNT陶瓷样品在不同波长外加光源照射下的XRD图谱(a)和部分衍射峰局部放大图(b)
Fig. 5 XRD patterns of NBT-BNT sample under different external laser irradiations (a) and enlarged images of partial diffraction peaks (b)
Wavelength /nm | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
405 | 0.0008 | 0.0003 | 0.0001 | 0.0003 | 0.0001 | 0.0005 |
520 | 0.0015 | 0.0005 | 0.0002 | 0.0002 | 0.0001 | 0.0003 |
655 | 0.0016 | 0.0004 | 0.0003 | 0.0002 | 0.0002 | 0.0003 |
表2 激光照射下NBT-BNT的样品XRD衍射面位移 Δd/d
Table 2 The displacement Δd/d of crystal planes of NBT- BNT samples under laser irradiation
Wavelength /nm | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
405 | 0.0008 | 0.0003 | 0.0001 | 0.0003 | 0.0001 | 0.0005 |
520 | 0.0015 | 0.0005 | 0.0002 | 0.0002 | 0.0001 | 0.0003 |
655 | 0.0016 | 0.0004 | 0.0003 | 0.0002 | 0.0002 | 0.0003 |
Temperature /℃ | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
50 | 0.0004 | 0.0001 | 0.0003 | 0.0001 | 0.0005 | 0.0009 |
100 | 0.0008 | 0.0004 | 0.0004 | 0.0004 | 0.001 | 0.0008 |
150 | 0.0009 | 0.0006 | 0.0006 | 0.0005 | 0.0012 | 0.0011 |
表3 不同温度下NBT-BNT样品晶面位移Δd/d
Table 3 The displacement Δd/d of crystal planes of NBT- BNT samples at different temperatures
Temperature /℃ | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
50 | 0.0004 | 0.0001 | 0.0003 | 0.0001 | 0.0005 | 0.0009 |
100 | 0.0008 | 0.0004 | 0.0004 | 0.0004 | 0.001 | 0.0008 |
150 | 0.0009 | 0.0006 | 0.0006 | 0.0005 | 0.0012 | 0.0011 |
[1] |
FIGIELSKI T. Photostriction effect in germanium. Physica Status Solidi (b), 1961,1(4):306-316.
DOI URL |
[2] | UCHINO K, AIZAWA M. Photostrictive actuator using PLZT ceramics. Japanese Journal of Applied Physics, 1985,24(S3):139. |
[3] |
KUNDYS B, VIRET M, COLSON D, et al. Light-induced size changes in BiFeO3 crystals. Nature Materials, 2010,9:803.
DOI URL PMID |
[4] | KUNDYS B. Photostrictive materials. Applied Physics Reviews, 2015,2(1):011301. |
[5] | WEI T C, WANG H P, LI T Y, et al. Photostriction of CH3NH3PbBr3 perovskite crystals. Advanced Materials, 2017, 29(35):1701789. |
[6] |
WEI T C, WANG H P, LIU H J, et al. Photostriction of strontium ruthenate. Nature Communications, 2017,8:15018.
DOI URL PMID |
[7] |
UCHINO K, AIZAWA M, NOMURA L S. Photostrictive effect in (Pb, La)(Zr, Ti)O3. Ferroelectrics, 1985,64(1):199-208.
DOI URL |
[8] |
SCHICK D, HERZOG M, WEN H, et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Physical Review Letters, 2014,112(9):097602.
DOI URL PMID |
[9] |
KUNDYS B, VIRET M, MENY C, et al. Wavelength dependence of photoinduced deformation in BiFeO3. Physical Review B, 2012,85(9):092301.
DOI URL |
[10] |
LAGOWSKI J, GATOS H C. Photomechanical effect in noncentrosymmetric semiconductors-CdS. Applied Physics Letters, 1972,20(1):14-16.
DOI URL |
[11] |
BUSCHERT J R, COLELLA R. Photostriction effect in silicon observed by time-resolved X-ray diffraction. Solid State Communications, 1991,80(6):419-422.
DOI URL |
[12] |
GAYATHRI S, SRIDEVI S, SINGH G, et al. Investigation of fast and sizeable photostriction effect in tellurium thin films using fiber Bragg grating sensors. Sensors and Actuators A-Physical, 2018,279:688-693.
DOI URL |
[13] |
YANG J C, LIOU Y D, TZENG W Y, et al. Ultrafast giant photostriction of epitaxial strontium iridate film with superior endurance. Nano Letters, 2018,18(12):7742-7748.
DOI URL PMID |
[14] |
PAILLARD C, XU B, DKHIL B, et al. Photostriction in ferroelectrics from density functional theory. Physical Review Letters, 2016,116(24):247401.
DOI URL PMID |
[15] |
YU Y, NAKANO M, IKEDA T. Directed bending of a polymer film by light. Nature, 2003,425(6954):145-145.
DOI URL PMID |
[16] |
WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Materials, 2015,14:1087.
DOI URL PMID |
[17] |
YU Y. A light-fuelled wave machine. Nature, 2017,546:604.
DOI URL PMID |
[18] | ZHANG Z, REMSING R C, CHAKRABORTY H, et al. Light- induced dilation in nanosheets of charge-transfer complexes. Proceedings of the National Academy of Sciences, 2018,115(15):3776. |
[19] | MIRVAKILI S M, HUNTER I W. Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, 2018,30(6):1704407. |
[20] |
TZOU H S, CHOU C S. Nonlinear opto-electromechanics and photodeformation of optical actuators. Smart Materials and Structures, 1996,5(2):230-235.
DOI URL |
[21] | UCHINO K. New applications of photostrictive ferroics. Materials Research Innovations, 1997,1(3):163-168. |
[22] |
POOSANAAS P, TONOOKA K, UCHINO K. Photostrictive actuators. Mechatronics, 2000,10(4):467-487.
DOI URL |
[23] | ZENG H, WASYLCZYK P, WIERSMA D S, et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Advanced Materials, 2018,30(24):1703554. |
[24] | WANG Z, LI K, HE Q, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity. Advanced Materials, 2019,31(7):1806849. |
[25] |
MENG Z Y, KUMAR U, CROSS L E. Electrostriction in lead lanthanum zirconate-titanate ceramics. Journal of the American Ceramic Society, 1985,68(8):459-462.
DOI URL |
[26] | TAKAGI K, KIKUCHI S, LI J F, et al. Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying. Journal of the American Ceramic Society, 2004,87(8):1477-1482. |
[27] | MATZEN S, GUILLEMOT L, MAROUTIAN T, et al. Tuning ultrafast photoinduced strain in ferroelectric-based devices. Advanced Electronic Materials, 2019,5(6):1800709. |
[28] | XIAO H, DONG W, GUO Y, et al. Design for highly piezoelectric and visible/near-infrared photoresponsive perovskite oxides. Advanced Materials, 2019,31(4):1805802 |
[29] |
KUNDYS B, BUKHANTSEV Y, VASILIEV S, et al. Three terminal capacitance technique for magnetostriction and thermal expansion measurements. Review of Scientific Instruments, 2004,75(6):2192-2196.
DOI URL |
[30] |
FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al. A new opto-mechanical effect in solids. Physical Review Letters, 2001,87(1):015501.
DOI URL PMID |
[31] |
CHEN C, LI X, LU T, et al. Reinvestigation of the photostrictive effect in lanthanum-modified lead zirconate titanate ferroelectrics. Journal of the American Ceramic Society, 2020,103(8):4074-4082.
DOI URL |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[5] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[6] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
[7] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[8] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[9] | 代晓栋, 张露伟, 钱奕成, 任智鑫, 曹焕奇, 印寿根. 锡铅混合钙钛矿太阳能电池垂直组分梯度的溶剂工程调控[J]. 无机材料学报, 2023, 38(9): 1089-1096. |
[10] | 董思吟, 帖舒婕, 袁瑞涵, 郑霄家. 低维卤化物钙钛矿直接型X射线探测器研究进展[J]. 无机材料学报, 2023, 38(9): 1017-1030. |
[11] | 王润, 相恒阳, 曾海波. 钙钛矿多色级联发光二极管中多中心载流子均衡分布调控研究[J]. 无机材料学报, 2023, 38(9): 1062-1068. |
[12] | 王马超, 唐扬敏, 邓明雪, 周真真, 刘小峰, 王家成, 刘茜. 共沉淀法制备Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿及其近红外发光性能[J]. 无机材料学报, 2023, 38(9): 1083-1088. |
[13] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[14] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[15] | 蔡凯, 靳志文. 基于二维钙钛矿(PEA)2PbI4的光电探测器[J]. 无机材料学报, 2023, 38(9): 1069-1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||